\(\int \frac {1}{x^3 (a+b x^3)^{3/2}} \, dx\) [225]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 255 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=\frac {2}{3 a x^2 \sqrt {a+b x^3}}-\frac {7 \sqrt {a+b x^3}}{6 a^2 x^2}-\frac {7 \sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{6 \sqrt [4]{3} a^2 \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

2/3/a/x^2/(b*x^3+a)^(1/2)-7/6*(b*x^3+a)^(1/2)/a^2/x^2-7/18*(1/2*6^(1/2)+1/ 
2*2^(1/2))*b^(2/3)*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3) 
*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1 
/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/a^2/ 
(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x 
^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.21 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=-\frac {\sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (-\frac {2}{3},\frac {3}{2},\frac {1}{3},-\frac {b x^3}{a}\right )}{2 a x^2 \sqrt {a+b x^3}} \] Input:

Integrate[1/(x^3*(a + b*x^3)^(3/2)),x]
 

Output:

-1/2*(Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[-2/3, 3/2, 1/3, -((b*x^3)/a)]) 
/(a*x^2*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.03, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {819, 847, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {7 \int \frac {1}{x^3 \sqrt {b x^3+a}}dx}{3 a}+\frac {2}{3 a x^2 \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 847

\(\displaystyle \frac {7 \left (-\frac {b \int \frac {1}{\sqrt {b x^3+a}}dx}{4 a}-\frac {\sqrt {a+b x^3}}{2 a x^2}\right )}{3 a}+\frac {2}{3 a x^2 \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {7 \left (-\frac {\sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{2 \sqrt [4]{3} a \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {\sqrt {a+b x^3}}{2 a x^2}\right )}{3 a}+\frac {2}{3 a x^2 \sqrt {a+b x^3}}\)

Input:

Int[1/(x^3*(a + b*x^3)^(3/2)),x]
 

Output:

2/(3*a*x^2*Sqrt[a + b*x^3]) + (7*(-1/2*Sqrt[a + b*x^3]/(a*x^2) - (Sqrt[2 + 
 Sqrt[3]]*b^(2/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x 
+ b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 
 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 
- 4*Sqrt[3]])/(2*3^(1/4)*a*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt 
[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/(3*a)
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 
Maple [A] (verified)

Time = 0.80 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.26

method result size
default \(-\frac {\sqrt {b \,x^{3}+a}}{2 a^{2} x^{2}}-\frac {2 b x}{3 a^{2} \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}+\frac {7 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{18 a^{2} \sqrt {b \,x^{3}+a}}\) \(321\)
elliptic \(-\frac {\sqrt {b \,x^{3}+a}}{2 a^{2} x^{2}}-\frac {2 b x}{3 a^{2} \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}+\frac {7 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{18 a^{2} \sqrt {b \,x^{3}+a}}\) \(321\)
risch \(-\frac {\sqrt {b \,x^{3}+a}}{2 a^{2} x^{2}}-\frac {b \left (b \left (-\frac {2 x}{3 b \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {4 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{9 b^{2} \sqrt {b \,x^{3}+a}}\right )+5 a \left (\frac {2 x}{3 a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{9 a b \sqrt {b \,x^{3}+a}}\right )\right )}{4 a^{2}}\) \(638\)

Input:

int(1/x^3/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2*(b*x^3+a)^(1/2)/a^2/x^2-2/3*b/a^2*x/((x^3+a/b)*b)^(1/2)+7/18*I/a^2*3^ 
(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^( 
1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a* 
b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1 
/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3 
+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b 
*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/ 
3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.26 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=-\frac {7 \, {\left (b x^{5} + a x^{2}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) + {\left (7 \, b x^{3} + 3 \, a\right )} \sqrt {b x^{3} + a}}{6 \, {\left (a^{2} b x^{5} + a^{3} x^{2}\right )}} \] Input:

integrate(1/x^3/(b*x^3+a)^(3/2),x, algorithm="fricas")
 

Output:

-1/6*(7*(b*x^5 + a*x^2)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) + (7*b*x 
^3 + 3*a)*sqrt(b*x^3 + a))/(a^2*b*x^5 + a^3*x^2)
 

Sympy [A] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.16 \[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=\frac {\Gamma \left (- \frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {2}{3}, \frac {3}{2} \\ \frac {1}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} x^{2} \Gamma \left (\frac {1}{3}\right )} \] Input:

integrate(1/x**3/(b*x**3+a)**(3/2),x)
 

Output:

gamma(-2/3)*hyper((-2/3, 3/2), (1/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/ 
2)*x**2*gamma(1/3))
 

Maxima [F]

\[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}} x^{3}} \,d x } \] Input:

integrate(1/x^3/(b*x^3+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^3 + a)^(3/2)*x^3), x)
 

Giac [F]

\[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}} x^{3}} \,d x } \] Input:

integrate(1/x^3/(b*x^3+a)^(3/2),x, algorithm="giac")
 

Output:

integrate(1/((b*x^3 + a)^(3/2)*x^3), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=\int \frac {1}{x^3\,{\left (b\,x^3+a\right )}^{3/2}} \,d x \] Input:

int(1/(x^3*(a + b*x^3)^(3/2)),x)
 

Output:

int(1/(x^3*(a + b*x^3)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x^3 \left (a+b x^3\right )^{3/2}} \, dx=\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{9}+2 a b \,x^{6}+a^{2} x^{3}}d x \] Input:

int(1/x^3/(b*x^3+a)^(3/2),x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(a + b*x**3)/(a**2*x**3 + 2*a*b*x**6 + b**2*x**9),x)