\(\int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx\) [302]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 257 \[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=\frac {\sqrt {-1-x^3}}{x}-\frac {\sqrt {-1-x^3}}{1-\sqrt {3}+x}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{2 \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}-\frac {\sqrt {2} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}} \] Output:

(-x^3-1)^(1/2)/x-(-x^3-1)^(1/2)/(1+x-3^(1/2))+1/2*3^(1/4)*(1/2*6^(1/2)+1/2 
*2^(1/2))*(1+x)*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*EllipticE((1+x+3^(1/2))/ 
(1+x-3^(1/2)),2*I-I*3^(1/2))/(-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(-x^3-1)^(1/2) 
-1/3*2^(1/2)*(1+x)*((x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*EllipticF((1+x+3^(1/2 
))/(1+x-3^(1/2)),2*I-I*3^(1/2))*3^(3/4)/(-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(-x 
^3-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.16 \[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=-\frac {\sqrt {1+x^3} \operatorname {Hypergeometric2F1}\left (-\frac {1}{3},\frac {1}{2},\frac {2}{3},-x^3\right )}{x \sqrt {-1-x^3}} \] Input:

Integrate[1/(x^2*Sqrt[-1 - x^3]),x]
 

Output:

-((Sqrt[1 + x^3]*Hypergeometric2F1[-1/3, 1/2, 2/3, -x^3])/(x*Sqrt[-1 - x^3 
]))
 

Rubi [A] (warning: unable to verify)

Time = 0.59 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {847, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt {-x^3-1}} \, dx\)

\(\Big \downarrow \) 847

\(\displaystyle \frac {1}{2} \int \frac {x}{\sqrt {-x^3-1}}dx+\frac {\sqrt {-x^3-1}}{x}\)

\(\Big \downarrow \) 833

\(\displaystyle \frac {1}{2} \left (\int \frac {x+\sqrt {3}+1}{\sqrt {-x^3-1}}dx-\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {-x^3-1}}dx\right )+\frac {\sqrt {-x^3-1}}{x}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {1}{2} \left (\int \frac {x+\sqrt {3}+1}{\sqrt {-x^3-1}}dx-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}\right )+\frac {\sqrt {-x^3-1}}{x}\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {1}{2} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}-\frac {2 \sqrt {-x^3-1}}{x-\sqrt {3}+1}\right )+\frac {\sqrt {-x^3-1}}{x}\)

Input:

Int[1/(x^2*Sqrt[-1 - x^3]),x]
 

Output:

Sqrt[-1 - x^3]/x + ((-2*Sqrt[-1 - x^3])/(1 - Sqrt[3] + x) + (3^(1/4)*Sqrt[ 
2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticE[Arc 
Sin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 + x) 
/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3]) - (2*Sqrt[2 - Sqrt[3]]*(1 + Sqrt[3] 
)*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 + Sq 
rt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 + x)/(1 
 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3]))/2
 

Defintions of rubi rules used

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.70 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.07

method result size
meijerg \(\frac {i \operatorname {hypergeom}\left (\left [-\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {2}{3}\right ], -x^{3}\right )}{x}\) \(18\)
default \(\frac {\sqrt {-x^{3}-1}}{x}-\frac {i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}}\) \(174\)
elliptic \(\frac {\sqrt {-x^{3}-1}}{x}-\frac {i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}}\) \(174\)
risch \(-\frac {x^{3}+1}{x \sqrt {-x^{3}-1}}-\frac {i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}}\) \(180\)

Input:

int(1/(-x^3-1)^(1/2)/x^2,x,method=_RETURNVERBOSE)
 

Output:

I/x*hypergeom([-1/3,1/2],[2/3],-x^3)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 24, normalized size of antiderivative = 0.09 \[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=\frac {i \, x {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) + \sqrt {-x^{3} - 1}}{x} \] Input:

integrate(1/x^2/(-x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

(I*x*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x)) + sqrt(-x^3 - 1 
))/x
 

Sympy [A] (verification not implemented)

Time = 0.44 (sec) , antiderivative size = 34, normalized size of antiderivative = 0.13 \[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=- \frac {i \Gamma \left (- \frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{3}, \frac {1}{2} \\ \frac {2}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 x \Gamma \left (\frac {2}{3}\right )} \] Input:

integrate(1/x**2/(-x**3-1)**(1/2),x)
 

Output:

-I*gamma(-1/3)*hyper((-1/3, 1/2), (2/3,), x**3*exp_polar(I*pi))/(3*x*gamma 
(2/3))
 

Maxima [F]

\[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} - 1} x^{2}} \,d x } \] Input:

integrate(1/x^2/(-x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(-x^3 - 1)*x^2), x)
 

Giac [F]

\[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} - 1} x^{2}} \,d x } \] Input:

integrate(1/x^2/(-x^3-1)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(-x^3 - 1)*x^2), x)
 

Mupad [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 244, normalized size of antiderivative = 0.95 \[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=\frac {\sqrt {-x^3-1}}{x}-\frac {\left (\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-\left (-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int(1/(x^2*(- x^3 - 1)^(1/2)),x)
 

Output:

(- x^3 - 1)^(1/2)/x - ((((3^(1/2)*1i)/2 - 1/2)*ellipticF(asin(((x + 1)/((3 
^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2 
)) - ((3^(1/2)*1i)/2 - 3/2)*ellipticE(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2) 
)^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))*((3^(1/2)*1i)/2 
 + 3/2)*(x^3 + 1)^(1/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2) 
)^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2) 
/((3^(1/2)*1i)/2 + 3/2))^(1/2))/((- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i) 
/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1 
i)/2 + 1/2))^(1/2))
 

Reduce [F]

\[ \int \frac {1}{x^2 \sqrt {-1-x^3}} \, dx=-\left (\int \frac {\sqrt {x^{3}+1}}{x^{5}+x^{2}}d x \right ) i \] Input:

int(1/x^2/(-x^3-1)^(1/2),x)
 

Output:

 - int(sqrt(x**3 + 1)/(x**5 + x**2),x)*i