\(\int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx\) [303]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 282 \[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=\frac {\sqrt {-1-x^3}}{4 x^4}-\frac {5 \sqrt {-1-x^3}}{8 x}+\frac {5 \sqrt {-1-x^3}}{8 \left (1-\sqrt {3}+x\right )}-\frac {5 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{16 \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}}+\frac {5 (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right ),-7+4 \sqrt {3}\right )}{4 \sqrt {2} \sqrt [4]{3} \sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}} \] Output:

1/4*(-x^3-1)^(1/2)/x^4-5/8*(-x^3-1)^(1/2)/x+5*(-x^3-1)^(1/2)/(8-8*3^(1/2)+ 
8*x)-5/16*3^(1/4)*(1/2*6^(1/2)+1/2*2^(1/2))*(1+x)*((x^2-x+1)/(1+x-3^(1/2)) 
^2)^(1/2)*EllipticE((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))/(-(1+x)/(1+ 
x-3^(1/2))^2)^(1/2)/(-x^3-1)^(1/2)+5/24*2^(1/2)*(1+x)*((x^2-x+1)/(1+x-3^(1 
/2))^2)^(1/2)*EllipticF((1+x+3^(1/2))/(1+x-3^(1/2)),2*I-I*3^(1/2))*3^(3/4) 
/(-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(-x^3-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.15 \[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=-\frac {\sqrt {1+x^3} \operatorname {Hypergeometric2F1}\left (-\frac {4}{3},\frac {1}{2},-\frac {1}{3},-x^3\right )}{4 x^4 \sqrt {-1-x^3}} \] Input:

Integrate[1/(x^5*Sqrt[-1 - x^3]),x]
 

Output:

-1/4*(Sqrt[1 + x^3]*Hypergeometric2F1[-4/3, 1/2, -1/3, -x^3])/(x^4*Sqrt[-1 
 - x^3])
 

Rubi [A] (warning: unable to verify)

Time = 0.64 (sec) , antiderivative size = 297, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {847, 847, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^5 \sqrt {-x^3-1}} \, dx\)

\(\Big \downarrow \) 847

\(\displaystyle \frac {\sqrt {-x^3-1}}{4 x^4}-\frac {5}{8} \int \frac {1}{x^2 \sqrt {-x^3-1}}dx\)

\(\Big \downarrow \) 847

\(\displaystyle \frac {\sqrt {-x^3-1}}{4 x^4}-\frac {5}{8} \left (\frac {1}{2} \int \frac {x}{\sqrt {-x^3-1}}dx+\frac {\sqrt {-x^3-1}}{x}\right )\)

\(\Big \downarrow \) 833

\(\displaystyle \frac {\sqrt {-x^3-1}}{4 x^4}-\frac {5}{8} \left (\frac {1}{2} \left (\int \frac {x+\sqrt {3}+1}{\sqrt {-x^3-1}}dx-\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {-x^3-1}}dx\right )+\frac {\sqrt {-x^3-1}}{x}\right )\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {\sqrt {-x^3-1}}{4 x^4}-\frac {5}{8} \left (\frac {1}{2} \left (\int \frac {x+\sqrt {3}+1}{\sqrt {-x^3-1}}dx-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}\right )+\frac {\sqrt {-x^3-1}}{x}\right )\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {\sqrt {-x^3-1}}{4 x^4}-\frac {5}{8} \left (\frac {1}{2} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}-\frac {2 \sqrt {-x^3-1}}{x-\sqrt {3}+1}\right )+\frac {\sqrt {-x^3-1}}{x}\right )\)

Input:

Int[1/(x^5*Sqrt[-1 - x^3]),x]
 

Output:

Sqrt[-1 - x^3]/(4*x^4) - (5*(Sqrt[-1 - x^3]/x + ((-2*Sqrt[-1 - x^3])/(1 - 
Sqrt[3] + x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 - 
Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 
+ 4*Sqrt[3]])/(Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3]) - (2*S 
qrt[2 - Sqrt[3]]*(1 + Sqrt[3])*(1 + x)*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x 
)^2]*EllipticF[ArcSin[(1 + Sqrt[3] + x)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3] 
])/(3^(1/4)*Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2)]*Sqrt[-1 - x^3]))/2))/8
 

Defintions of rubi rules used

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 847
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x 
)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + n*(p + 1) 
+ 1)/(a*c^n*(m + 1)))   Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a 
, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.63 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.06

method result size
meijerg \(\frac {i \operatorname {hypergeom}\left (\left [-\frac {4}{3}, \frac {1}{2}\right ], \left [-\frac {1}{3}\right ], -x^{3}\right )}{4 x^{4}}\) \(18\)
risch \(\frac {5 x^{6}+3 x^{3}-2}{8 x^{4} \sqrt {-x^{3}-1}}+\frac {5 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{24 \sqrt {-x^{3}-1}}\) \(187\)
default \(\frac {\sqrt {-x^{3}-1}}{4 x^{4}}-\frac {5 \sqrt {-x^{3}-1}}{8 x}+\frac {5 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{24 \sqrt {-x^{3}-1}}\) \(189\)
elliptic \(\frac {\sqrt {-x^{3}-1}}{4 x^{4}}-\frac {5 \sqrt {-x^{3}-1}}{8 x}+\frac {5 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{24 \sqrt {-x^{3}-1}}\) \(189\)

Input:

int(1/x^5/(-x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/4*I/x^4*hypergeom([-4/3,1/2],[-1/3],-x^3)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.13 \[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=\frac {-5 i \, x^{4} {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) - {\left (5 \, x^{3} - 2\right )} \sqrt {-x^{3} - 1}}{8 \, x^{4}} \] Input:

integrate(1/x^5/(-x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

1/8*(-5*I*x^4*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x)) - (5*x 
^3 - 2)*sqrt(-x^3 - 1))/x^4
 

Sympy [A] (verification not implemented)

Time = 0.57 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.14 \[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=- \frac {i \Gamma \left (- \frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {4}{3}, \frac {1}{2} \\ - \frac {1}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 x^{4} \Gamma \left (- \frac {1}{3}\right )} \] Input:

integrate(1/x**5/(-x**3-1)**(1/2),x)
 

Output:

-I*gamma(-4/3)*hyper((-4/3, 1/2), (-1/3,), x**3*exp_polar(I*pi))/(3*x**4*g 
amma(-1/3))
 

Maxima [F]

\[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} - 1} x^{5}} \,d x } \] Input:

integrate(1/x^5/(-x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/(sqrt(-x^3 - 1)*x^5), x)
 

Giac [F]

\[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} - 1} x^{5}} \,d x } \] Input:

integrate(1/x^5/(-x^3-1)^(1/2),x, algorithm="giac")
 

Output:

integrate(1/(sqrt(-x^3 - 1)*x^5), x)
 

Mupad [B] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 259, normalized size of antiderivative = 0.92 \[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=\frac {\sqrt {-x^3-1}}{4\,x^4}-\frac {5\,\sqrt {-x^3-1}}{8\,x}+\frac {5\,\left (\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-\left (-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{8\,\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int(1/(x^5*(- x^3 - 1)^(1/2)),x)
 

Output:

(- x^3 - 1)^(1/2)/(4*x^4) - (5*(- x^3 - 1)^(1/2))/(8*x) + (5*(((3^(1/2)*1i 
)/2 - 1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1 
/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)) - ((3^(1/2)*1i)/2 - 3/2)*elliptic 
E(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/(( 
3^(1/2)*1i)/2 - 3/2)))*((3^(1/2)*1i)/2 + 3/2)*(x^3 + 1)^(1/2)*((x + (3^(1/ 
2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3 
/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2))/(8*( 
- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 
 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))
 

Reduce [F]

\[ \int \frac {1}{x^5 \sqrt {-1-x^3}} \, dx=-\left (\int \frac {\sqrt {x^{3}+1}}{x^{8}+x^{5}}d x \right ) i \] Input:

int(1/x^5/(-x^3-1)^(1/2),x)
 

Output:

 - int(sqrt(x**3 + 1)/(x**8 + x**5),x)*i