\(\int \sqrt {a+\frac {b}{x^3}} x \, dx\) [463]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 13, antiderivative size = 242 \[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=\frac {1}{2} \sqrt {a+\frac {b}{x^3}} x^2-\frac {3^{3/4} \sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{2 \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \] Output:

1/2*(a+b/x^3)^(1/2)*x^2-1/2*3^(3/4)*(1/2*6^(1/2)+1/2*2^(1/2))*b^(2/3)*(a^( 
1/3)+b^(1/3)/x)*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/((1+3^(1/2))*a^(1 
/3)+b^(1/3)/x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)/x)/((1+3^(1 
/2))*a^(1/3)+b^(1/3)/x),I*3^(1/2)+2*I)/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+b 
^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1/3)/x)^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.20 \[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=\frac {2 \sqrt {a+\frac {b}{x^3}} x^2 \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},\frac {1}{6},\frac {7}{6},-\frac {a x^3}{b}\right )}{\sqrt {1+\frac {a x^3}{b}}} \] Input:

Integrate[Sqrt[a + b/x^3]*x,x]
 

Output:

(2*Sqrt[a + b/x^3]*x^2*Hypergeometric2F1[-1/2, 1/6, 7/6, -((a*x^3)/b)])/Sq 
rt[1 + (a*x^3)/b]
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {858, 809, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x \sqrt {a+\frac {b}{x^3}} \, dx\)

\(\Big \downarrow \) 858

\(\displaystyle -\int \sqrt {a+\frac {b}{x^3}} x^3d\frac {1}{x}\)

\(\Big \downarrow \) 809

\(\displaystyle \frac {1}{2} x^2 \sqrt {a+\frac {b}{x^3}}-\frac {3}{4} b \int \frac {1}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {1}{2} x^2 \sqrt {a+\frac {b}{x^3}}-\frac {3^{3/4} \sqrt {2+\sqrt {3}} b^{2/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{2 \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}\)

Input:

Int[Sqrt[a + b/x^3]*x,x]
 

Output:

(Sqrt[a + b/x^3]*x^2)/2 - (3^(3/4)*Sqrt[2 + Sqrt[3]]*b^(2/3)*(a^(1/3) + b^ 
(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3]) 
*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3) 
/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(2*Sqrt[a + b/x 
^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/ 
x)^2])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 809
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c* 
x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1))), x] - Simp[b*n*(p/(c^n*(m + 1)))   I 
nt[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && IGtQ 
[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntB 
inomialQ[a, b, c, n, m, p, x]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 724 vs. \(2 (183 ) = 366\).

Time = 0.65 (sec) , antiderivative size = 725, normalized size of antiderivative = 3.00

method result size
risch \(\frac {\sqrt {\frac {a \,x^{3}+b}{x^{3}}}\, x^{2}}{2}+\frac {3 b \left (\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) x}{\left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}\, {\left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}^{2} \sqrt {\frac {\left (-a^{2} b \right )^{\frac {1}{3}} \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}{a \left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}\, \sqrt {\frac {\left (-a^{2} b \right )^{\frac {1}{3}} \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}{a \left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}\, a \operatorname {EllipticF}\left (\sqrt {\frac {\left (-\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) x}{\left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}{\left (\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}}\right ) \sqrt {\frac {a \,x^{3}+b}{x^{3}}}\, x \sqrt {x \left (a \,x^{3}+b \right )}}{2 \left (-\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (-a^{2} b \right )^{\frac {1}{3}} \sqrt {a x \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right ) \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}\, \left (a \,x^{3}+b \right )}\) \(725\)
default \(\text {Expression too large to display}\) \(1786\)

Input:

int((a+b/x^3)^(1/2)*x,x,method=_RETURNVERBOSE)
 

Output:

1/2*((a*x^3+b)/x^3)^(1/2)*x^2+3/2*b*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a* 
(-a^2*b)^(1/3))*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/ 
(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/ 
3)))^(1/2)*(x-1/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^ 
(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2) 
/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(1/a*(-a^2*b)^(1/3)*(x+1/ 
2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)+ 
1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)/(-3/2/a*(-a^ 
2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*a/(-a^2*b)^(1/3)/(a*x*(x-1/a*(- 
a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1 
/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2)*EllipticF(((-3/ 
2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3 
)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(- 
a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3 
^(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1 
/3))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2))*((a*x^3 
+b)/x^3)^(1/2)*x*(x*(a*x^3+b))^(1/2)/(a*x^3+b)
 

Fricas [F]

\[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=\int { \sqrt {a + \frac {b}{x^{3}}} x \,d x } \] Input:

integrate((a+b/x^3)^(1/2)*x,x, algorithm="fricas")
 

Output:

integral(x*sqrt((a*x^3 + b)/x^3), x)
 

Sympy [A] (verification not implemented)

Time = 0.67 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.18 \[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=- \frac {\sqrt {a} x^{2} \Gamma \left (- \frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {2}{3}, - \frac {1}{2} \\ \frac {1}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 \Gamma \left (\frac {1}{3}\right )} \] Input:

integrate((a+b/x**3)**(1/2)*x,x)
 

Output:

-sqrt(a)*x**2*gamma(-2/3)*hyper((-2/3, -1/2), (1/3,), b*exp_polar(I*pi)/(a 
*x**3))/(3*gamma(1/3))
 

Maxima [F]

\[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=\int { \sqrt {a + \frac {b}{x^{3}}} x \,d x } \] Input:

integrate((a+b/x^3)^(1/2)*x,x, algorithm="maxima")
 

Output:

integrate(sqrt(a + b/x^3)*x, x)
 

Giac [F]

\[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=\int { \sqrt {a + \frac {b}{x^{3}}} x \,d x } \] Input:

integrate((a+b/x^3)^(1/2)*x,x, algorithm="giac")
 

Output:

integrate(sqrt(a + b/x^3)*x, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=\int x\,\sqrt {a+\frac {b}{x^3}} \,d x \] Input:

int(x*(a + b/x^3)^(1/2),x)
 

Output:

int(x*(a + b/x^3)^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {a+\frac {b}{x^3}} x \, dx=\frac {\sqrt {x}\, \sqrt {a \,x^{3}+b}}{2}+\frac {3 \left (\int \frac {\sqrt {x}\, \sqrt {a \,x^{3}+b}}{a \,x^{4}+b x}d x \right ) b}{4} \] Input:

int((a+b/x^3)^(1/2)*x,x)
                                                                                    
                                                                                    
 

Output:

(2*sqrt(x)*sqrt(a*x**3 + b) + 3*int((sqrt(x)*sqrt(a*x**3 + b))/(a*x**4 + b 
*x),x)*b)/4