\(\int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx\) [464]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 243 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=-\frac {2 \sqrt {a+\frac {b}{x^3}}}{5 x}-\frac {2\ 3^{3/4} \sqrt {2+\sqrt {3}} a \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{5 \sqrt [3]{b} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \] Output:

-2/5*(a+b/x^3)^(1/2)/x-2/5*3^(3/4)*(1/2*6^(1/2)+1/2*2^(1/2))*a*(a^(1/3)+b^ 
(1/3)/x)*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^( 
1/3)/x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)/x)/((1+3^(1/2))*a^ 
(1/3)+b^(1/3)/x),I*3^(1/2)+2*I)/b^(1/3)/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+ 
b^(1/3)/x)/((1+3^(1/2))*a^(1/3)+b^(1/3)/x)^2)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.01 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.21 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=-\frac {2 \sqrt {a+\frac {b}{x^3}} \operatorname {Hypergeometric2F1}\left (-\frac {5}{6},-\frac {1}{2},\frac {1}{6},-\frac {a x^3}{b}\right )}{5 x \sqrt {1+\frac {a x^3}{b}}} \] Input:

Integrate[Sqrt[a + b/x^3]/x^2,x]
 

Output:

(-2*Sqrt[a + b/x^3]*Hypergeometric2F1[-5/6, -1/2, 1/6, -((a*x^3)/b)])/(5*x 
*Sqrt[1 + (a*x^3)/b])
 

Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {858, 748, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx\)

\(\Big \downarrow \) 858

\(\displaystyle -\int \sqrt {a+\frac {b}{x^3}}d\frac {1}{x}\)

\(\Big \downarrow \) 748

\(\displaystyle -\frac {3}{5} a \int \frac {1}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{5 x}\)

\(\Big \downarrow \) 759

\(\displaystyle -\frac {2\ 3^{3/4} \sqrt {2+\sqrt {3}} a \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{5 \sqrt [3]{b} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{5 x}\)

Input:

Int[Sqrt[a + b/x^3]/x^2,x]
 

Output:

(-2*Sqrt[a + b/x^3])/(5*x) - (2*3^(3/4)*Sqrt[2 + Sqrt[3]]*a*(a^(1/3) + b^( 
1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3])* 
a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/ 
x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(5*b^(1/3)*Sqrt[ 
a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b 
^(1/3)/x)^2])
 

Defintions of rubi rules used

rule 748
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p 
+ 1)), x] + Simp[a*n*(p/(n*p + 1))   Int[(a + b*x^n)^(p - 1), x], x] /; Fre 
eQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || LtQ[Denominat 
or[p + 1/n], Denominator[p]])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 725 vs. \(2 (184 ) = 368\).

Time = 0.50 (sec) , antiderivative size = 726, normalized size of antiderivative = 2.99

method result size
risch \(-\frac {2 \sqrt {\frac {a \,x^{3}+b}{x^{3}}}}{5 x}+\frac {6 a^{2} \left (\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \sqrt {\frac {\left (-\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) x}{\left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}\, {\left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}^{2} \sqrt {\frac {\left (-a^{2} b \right )^{\frac {1}{3}} \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}{a \left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}\, \sqrt {\frac {\left (-a^{2} b \right )^{\frac {1}{3}} \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}{a \left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}\, \operatorname {EllipticF}\left (\sqrt {\frac {\left (-\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) x}{\left (-\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right )}}, \sqrt {\frac {\left (\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}{\left (\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}}\right ) \sqrt {\frac {a \,x^{3}+b}{x^{3}}}\, x \sqrt {x \left (a \,x^{3}+b \right )}}{5 \left (-\frac {3 \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (-a^{2} b \right )^{\frac {1}{3}} \sqrt {a x \left (x -\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{a}\right ) \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}+\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right ) \left (x +\frac {\left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}-\frac {i \sqrt {3}\, \left (-a^{2} b \right )^{\frac {1}{3}}}{2 a}\right )}\, \left (a \,x^{3}+b \right )}\) \(726\)
default \(\text {Expression too large to display}\) \(1785\)

Input:

int((a+b/x^3)^(1/2)/x^2,x,method=_RETURNVERBOSE)
 

Output:

-2/5*((a*x^3+b)/x^3)^(1/2)/x+6/5*a^2*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a 
*(-a^2*b)^(1/3))*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x 
/(-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1 
/3)))^(1/2)*(x-1/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b) 
^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2 
)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(1/a*(-a^2*b)^(1/3)*(x+1 
/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3) 
+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)/(-3/2/a*(-a 
^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-a^2*b)^(1/3)/(a*x*(x-1/a*(-a 
^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/ 
2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2)*EllipticF(((-3/2 
/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3) 
+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(-a 
^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^ 
(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/ 
3))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2))*((a*x^3+ 
b)/x^3)^(1/2)*x*(x*(a*x^3+b))^(1/2)/(a*x^3+b)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.17 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=-\frac {2 \, {\left (3 \, a \sqrt {b} x {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, \frac {1}{x}\right ) + b \sqrt {\frac {a x^{3} + b}{x^{3}}}\right )}}{5 \, b x} \] Input:

integrate((a+b/x^3)^(1/2)/x^2,x, algorithm="fricas")
 

Output:

-2/5*(3*a*sqrt(b)*x*weierstrassPInverse(0, -4*a/b, 1/x) + b*sqrt((a*x^3 + 
b)/x^3))/(b*x)
 

Sympy [A] (verification not implemented)

Time = 0.63 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.16 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=- \frac {\sqrt {a} \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{3} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 x \Gamma \left (\frac {4}{3}\right )} \] Input:

integrate((a+b/x**3)**(1/2)/x**2,x)
 

Output:

-sqrt(a)*gamma(1/3)*hyper((-1/2, 1/3), (4/3,), b*exp_polar(I*pi)/(a*x**3)) 
/(3*x*gamma(4/3))
 

Maxima [F]

\[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=\int { \frac {\sqrt {a + \frac {b}{x^{3}}}}{x^{2}} \,d x } \] Input:

integrate((a+b/x^3)^(1/2)/x^2,x, algorithm="maxima")
 

Output:

integrate(sqrt(a + b/x^3)/x^2, x)
 

Giac [F]

\[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=\int { \frac {\sqrt {a + \frac {b}{x^{3}}}}{x^{2}} \,d x } \] Input:

integrate((a+b/x^3)^(1/2)/x^2,x, algorithm="giac")
 

Output:

integrate(sqrt(a + b/x^3)/x^2, x)
 

Mupad [B] (verification not implemented)

Time = 0.61 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.16 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=-\frac {\sqrt {a+\frac {b}{x^3}}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{2},\frac {1}{3};\ \frac {4}{3};\ -\frac {b}{a\,x^3}\right )}{x\,\sqrt {\frac {b}{a\,x^3}+1}} \] Input:

int((a + b/x^3)^(1/2)/x^2,x)
 

Output:

-((a + b/x^3)^(1/2)*hypergeom([-1/2, 1/3], 4/3, -b/(a*x^3)))/(x*(b/(a*x^3) 
 + 1)^(1/2))
 

Reduce [F]

\[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^2} \, dx=\frac {-2 \sqrt {a \,x^{3}+b}-3 \sqrt {x}\, \left (\int \frac {\sqrt {x}\, \sqrt {a \,x^{3}+b}}{a \,x^{7}+b \,x^{4}}d x \right ) b \,x^{2}}{2 \sqrt {x}\, x^{2}} \] Input:

int((a+b/x^3)^(1/2)/x^2,x)
 

Output:

( - 2*sqrt(a*x**3 + b) - 3*sqrt(x)*int((sqrt(x)*sqrt(a*x**3 + b))/(a*x**7 
+ b*x**4),x)*b*x**2)/(2*sqrt(x)*x**2)