\(\int \frac {c+d x}{a+b (c+d x)^3} \, dx\) [61]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 140 \[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=-\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} \sqrt [3]{a} b^{2/3} d}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3} d}+\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 \sqrt [3]{a} b^{2/3} d} \] Output:

-1/3*arctan(1/3*(a^(1/3)-2*b^(1/3)*(d*x+c))*3^(1/2)/a^(1/3))*3^(1/2)/a^(1/ 
3)/b^(2/3)/d-1/3*ln(a^(1/3)+b^(1/3)*(d*x+c))/a^(1/3)/b^(2/3)/d+1/6*ln(a^(2 
/3)-a^(1/3)*b^(1/3)*(d*x+c)+b^(2/3)*(d*x+c)^2)/a^(1/3)/b^(2/3)/d
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.81 \[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=\frac {2 \sqrt {3} \arctan \left (\frac {-\sqrt [3]{a}+2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )-2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )+\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 \sqrt [3]{a} b^{2/3} d} \] Input:

Integrate[(c + d*x)/(a + b*(c + d*x)^3),x]
 

Output:

(2*Sqrt[3]*ArcTan[(-a^(1/3) + 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))] - 2* 
Log[a^(1/3) + b^(1/3)*(c + d*x)] + Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) 
 + b^(2/3)*(c + d*x)^2])/(6*a^(1/3)*b^(2/3)*d)
 

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.97, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.474, Rules used = {895, 821, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x}{a+b (c+d x)^3} \, dx\)

\(\Big \downarrow \) 895

\(\displaystyle \frac {\int \frac {c+d x}{b (c+d x)^3+a}d(c+d x)}{d}\)

\(\Big \downarrow \) 821

\(\displaystyle \frac {\frac {\int \frac {\sqrt [3]{b} (c+d x)+\sqrt [3]{a}}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\int \frac {1}{\sqrt [3]{b} (c+d x)+\sqrt [3]{a}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {\int \frac {\sqrt [3]{b} (c+d x)+\sqrt [3]{a}}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}}{d}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)+\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)\right )}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)\right )}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{2 \sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {-\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 \sqrt [3]{a} \sqrt [3]{b}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3}}}{d}\)

Input:

Int[(c + d*x)/(a + b*(c + d*x)^3),x]
 

Output:

(-1/3*Log[a^(1/3) + b^(1/3)*(c + d*x)]/(a^(1/3)*b^(2/3)) + (-((Sqrt[3]*Arc 
Tan[(1 - (2*b^(1/3)*(c + d*x))/a^(1/3))/Sqrt[3]])/b^(1/3)) + Log[a^(2/3) - 
 a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2]/(2*b^(1/3)))/(3*a^(1/3)* 
b^(1/3)))/d
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 821
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(- 
1)   Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) 
 Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2 
*x^2), x], x] /; FreeQ[{a, b}, x]
 

rule 895
Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Simp[u^m/(Coeff 
icient[v, x, 1]*v^m)   Subst[Int[x^m*(a + b*x^n)^p, x], x, v], x] /; FreeQ[ 
{a, b, m, n, p}, x] && LinearPairQ[u, v, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.20 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.54

method result size
default \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{3} \textit {\_Z}^{3}+3 b c \,d^{2} \textit {\_Z}^{2}+3 b \,c^{2} d \textit {\_Z} +c^{3} b +a \right )}{\sum }\frac {\left (\textit {\_R} d +c \right ) \ln \left (x -\textit {\_R} \right )}{d^{2} \textit {\_R}^{2}+2 c d \textit {\_R} +c^{2}}}{3 b d}\) \(76\)
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{3} \textit {\_Z}^{3}+3 b c \,d^{2} \textit {\_Z}^{2}+3 b \,c^{2} d \textit {\_Z} +c^{3} b +a \right )}{\sum }\frac {\left (\textit {\_R} d +c \right ) \ln \left (x -\textit {\_R} \right )}{d^{2} \textit {\_R}^{2}+2 c d \textit {\_R} +c^{2}}}{3 b d}\) \(76\)

Input:

int((d*x+c)/(a+b*(d*x+c)^3),x,method=_RETURNVERBOSE)
 

Output:

1/3/b/d*sum((_R*d+c)/(_R^2*d^2+2*_R*c*d+c^2)*ln(x-_R),_R=RootOf(_Z^3*b*d^3 
+3*_Z^2*b*c*d^2+3*_Z*b*c^2*d+b*c^3+a))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 452, normalized size of antiderivative = 3.23 \[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} a b \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b^{2} d^{3} x^{3} + 6 \, b^{2} c d^{2} x^{2} + 6 \, b^{2} c^{2} d x + 2 \, b^{2} c^{3} - a b + 3 \, \sqrt {\frac {1}{3}} {\left (a b d x + a b c + 2 \, {\left (d^{2} x^{2} + 2 \, c d x + c^{2}\right )} \left (-a b^{2}\right )^{\frac {2}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac {2}{3}} {\left (d x + c\right )}}{b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a}\right ) + \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2} + \left (-a b^{2}\right )^{\frac {1}{3}} {\left (b d x + b c\right )} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) - 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b d x + b c - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{6 \, a b^{2} d}, \frac {6 \, \sqrt {\frac {1}{3}} a b \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, b d x + 2 \, b c + \left (-a b^{2}\right )^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}}}{b}\right ) + \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2} + \left (-a b^{2}\right )^{\frac {1}{3}} {\left (b d x + b c\right )} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) - 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} \log \left (b d x + b c - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{6 \, a b^{2} d}\right ] \] Input:

integrate((d*x+c)/(a+b*(d*x+c)^3),x, algorithm="fricas")
 

Output:

[1/6*(3*sqrt(1/3)*a*b*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*d^3*x^3 + 6*b^2*c* 
d^2*x^2 + 6*b^2*c^2*d*x + 2*b^2*c^3 - a*b + 3*sqrt(1/3)*(a*b*d*x + a*b*c + 
 2*(d^2*x^2 + 2*c*d*x + c^2)*(-a*b^2)^(2/3) + (-a*b^2)^(1/3)*a)*sqrt((-a*b 
^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*(d*x + c))/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3* 
b*c^2*d*x + b*c^3 + a)) + (-a*b^2)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b 
^2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) - 2*(-a*b^2)^(2/3) 
*log(b*d*x + b*c - (-a*b^2)^(1/3)))/(a*b^2*d), 1/6*(6*sqrt(1/3)*a*b*sqrt(- 
(-a*b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b*d*x + 2*b*c + (-a*b^2)^(1/3))*sqrt 
(-(-a*b^2)^(1/3)/a)/b) + (-a*b^2)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^ 
2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) - 2*(-a*b^2)^(2/3)* 
log(b*d*x + b*c - (-a*b^2)^(1/3)))/(a*b^2*d)]
 

Sympy [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.21 \[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=\frac {\operatorname {RootSum} {\left (27 t^{3} a b^{2} + 1, \left ( t \mapsto t \log {\left (x + \frac {9 t^{2} a b + c}{d} \right )} \right )\right )}}{d} \] Input:

integrate((d*x+c)/(a+b*(d*x+c)**3),x)
 

Output:

RootSum(27*_t**3*a*b**2 + 1, Lambda(_t, _t*log(x + (9*_t**2*a*b + c)/d)))/ 
d
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=\int { \frac {d x + c}{{\left (d x + c\right )}^{3} b + a} \,d x } \] Input:

integrate((d*x+c)/(a+b*(d*x+c)^3),x, algorithm="maxima")
 

Output:

integrate((d*x + c)/((d*x + c)^3*b + a), x)
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.01 \[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=-\frac {1}{3} \, \sqrt {3} \left (-\frac {1}{a b^{2} d^{3}}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac {2}{3}}\right )}}{3 \, \left (-a^{2} b\right )^{\frac {2}{3}}}\right ) - \frac {1}{6} \, \left (-\frac {1}{a b^{2} d^{3}}\right )^{\frac {1}{3}} \log \left ({\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac {2}{3}}\right )}^{2} + 3 \, \left (-a^{2} b\right )^{\frac {4}{3}}\right ) + \frac {1}{3} \, \left (-\frac {1}{a b^{2} d^{3}}\right )^{\frac {1}{3}} \log \left ({\left | a b d x + a b c + \left (-a^{2} b\right )^{\frac {2}{3}} \right |}\right ) \] Input:

integrate((d*x+c)/(a+b*(d*x+c)^3),x, algorithm="giac")
 

Output:

-1/3*sqrt(3)*(-1/(a*b^2*d^3))^(1/3)*arctan(1/3*sqrt(3)*(2*a*b*d*x + 2*a*b* 
c - (-a^2*b)^(2/3))/(-a^2*b)^(2/3)) - 1/6*(-1/(a*b^2*d^3))^(1/3)*log((2*a* 
b*d*x + 2*a*b*c - (-a^2*b)^(2/3))^2 + 3*(-a^2*b)^(4/3)) + 1/3*(-1/(a*b^2*d 
^3))^(1/3)*log(abs(a*b*d*x + a*b*c + (-a^2*b)^(2/3)))
 

Mupad [B] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.07 \[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=\frac {\ln \left (b^{1/3}\,c-{\left (-a\right )}^{1/3}+b^{1/3}\,d\,x\right )}{3\,{\left (-a\right )}^{1/3}\,b^{2/3}\,d}+\frac {\ln \left (b\,c\,d^4+b\,d^5\,x-\frac {{\left (-a\right )}^{1/3}\,b^{2/3}\,d^4\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{4}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,{\left (-a\right )}^{1/3}\,b^{2/3}\,d}-\frac {\ln \left (b\,c\,d^4+b\,d^5\,x-\frac {{\left (-a\right )}^{1/3}\,b^{2/3}\,d^4\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{4}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,{\left (-a\right )}^{1/3}\,b^{2/3}\,d} \] Input:

int((c + d*x)/(a + b*(c + d*x)^3),x)
 

Output:

log(b^(1/3)*c - (-a)^(1/3) + b^(1/3)*d*x)/(3*(-a)^(1/3)*b^(2/3)*d) + (log( 
b*c*d^4 + b*d^5*x - ((-a)^(1/3)*b^(2/3)*d^4*(3^(1/2)*1i - 1)^2)/4)*(3^(1/2 
)*1i - 1))/(6*(-a)^(1/3)*b^(2/3)*d) - (log(b*c*d^4 + b*d^5*x - ((-a)^(1/3) 
*b^(2/3)*d^4*(3^(1/2)*1i + 1)^2)/4)*(3^(1/2)*1i + 1))/(6*(-a)^(1/3)*b^(2/3 
)*d)
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.78 \[ \int \frac {c+d x}{a+b (c+d x)^3} \, dx=\frac {-2 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} c -2 b^{\frac {1}{3}} d x}{a^{\frac {1}{3}} \sqrt {3}}\right )+\mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} c -b^{\frac {1}{3}} a^{\frac {1}{3}} d x +b^{\frac {2}{3}} c^{2}+2 b^{\frac {2}{3}} c d x +b^{\frac {2}{3}} d^{2} x^{2}\right )-2 \,\mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} c +b^{\frac {1}{3}} d x \right )}{6 b^{\frac {2}{3}} a^{\frac {1}{3}} d} \] Input:

int((d*x+c)/(a+b*(d*x+c)^3),x)
 

Output:

( - 2*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*c - 2*b**(1/3)*d*x)/(a**(1/3)*sq 
rt(3))) + log(a**(2/3) - b**(1/3)*a**(1/3)*c - b**(1/3)*a**(1/3)*d*x + b** 
(2/3)*c**2 + 2*b**(2/3)*c*d*x + b**(2/3)*d**2*x**2) - 2*log(a**(1/3) + b** 
(1/3)*c + b**(1/3)*d*x))/(6*b**(2/3)*a**(1/3)*d)