\(\int \frac {1}{a+b (c+d x)^3} \, dx\) [62]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 13, antiderivative size = 140 \[ \int \frac {1}{a+b (c+d x)^3} \, dx=-\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} a^{2/3} \sqrt [3]{b} d}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b} d}-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 a^{2/3} \sqrt [3]{b} d} \] Output:

-1/3*arctan(1/3*(a^(1/3)-2*b^(1/3)*(d*x+c))*3^(1/2)/a^(1/3))*3^(1/2)/a^(2/ 
3)/b^(1/3)/d+1/3*ln(a^(1/3)+b^(1/3)*(d*x+c))/a^(2/3)/b^(1/3)/d-1/6*ln(a^(2 
/3)-a^(1/3)*b^(1/3)*(d*x+c)+b^(2/3)*(d*x+c)^2)/a^(2/3)/b^(1/3)/d
 

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.83 \[ \int \frac {1}{a+b (c+d x)^3} \, dx=\frac {2 \sqrt {3} \arctan \left (\frac {-\sqrt [3]{a}+2 \sqrt [3]{b} (c+d x)}{\sqrt {3} \sqrt [3]{a}}\right )+2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )-\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 a^{2/3} \sqrt [3]{b} d} \] Input:

Integrate[(a + b*(c + d*x)^3)^(-1),x]
 

Output:

(2*Sqrt[3]*ArcTan[(-a^(1/3) + 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))] + 2* 
Log[a^(1/3) + b^(1/3)*(c + d*x)] - Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) 
 + b^(2/3)*(c + d*x)^2])/(6*a^(2/3)*b^(1/3)*d)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.94, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {239, 750, 16, 1142, 25, 27, 1082, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a+b (c+d x)^3} \, dx\)

\(\Big \downarrow \) 239

\(\displaystyle \frac {\int \frac {1}{b (c+d x)^3+a}d(c+d x)}{d}\)

\(\Big \downarrow \) 750

\(\displaystyle \frac {\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 a^{2/3}}+\frac {\int \frac {1}{\sqrt [3]{b} (c+d x)+\sqrt [3]{a}}d(c+d x)}{3 a^{2/3}}}{d}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {\int \frac {2 \sqrt [3]{a}-\sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {\int -\frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)\right )}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)+\frac {\int \frac {\sqrt [3]{b} \left (\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)\right )}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{2 \sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {3}{2} \sqrt [3]{a} \int \frac {1}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)+\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)+\frac {3 \int \frac {1}{-\left (1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )^2-3}d\left (1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\frac {1}{2} \int \frac {\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{b^{2/3} (c+d x)^2-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+a^{2/3}}d(c+d x)-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {-\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{2 \sqrt [3]{b}}-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{b}}}{3 a^{2/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 a^{2/3} \sqrt [3]{b}}}{d}\)

Input:

Int[(a + b*(c + d*x)^3)^(-1),x]
 

Output:

(Log[a^(1/3) + b^(1/3)*(c + d*x)]/(3*a^(2/3)*b^(1/3)) + (-((Sqrt[3]*ArcTan 
[(1 - (2*b^(1/3)*(c + d*x))/a^(1/3))/Sqrt[3]])/b^(1/3)) - Log[a^(2/3) - a^ 
(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2]/(2*b^(1/3)))/(3*a^(2/3)))/d
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 239
Int[((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Simp[1/Coefficient[v, x, 1 
]   Subst[Int[(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, n, p}, x] && Lin 
earQ[v, x] && NeQ[v, x]
 

rule 750
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2)   Int[1/ 
(Rt[a, 3] + Rt[b, 3]*x), x], x] + Simp[1/(3*Rt[a, 3]^2)   Int[(2*Rt[a, 3] - 
 Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x] /; 
 FreeQ[{a, b}, x]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.19 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.51

method result size
default \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{3} \textit {\_Z}^{3}+3 b c \,d^{2} \textit {\_Z}^{2}+3 b \,c^{2} d \textit {\_Z} +c^{3} b +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{d^{2} \textit {\_R}^{2}+2 c d \textit {\_R} +c^{2}}}{3 b d}\) \(71\)
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,d^{3} \textit {\_Z}^{3}+3 b c \,d^{2} \textit {\_Z}^{2}+3 b \,c^{2} d \textit {\_Z} +c^{3} b +a \right )}{\sum }\frac {\ln \left (x -\textit {\_R} \right )}{d^{2} \textit {\_R}^{2}+2 c d \textit {\_R} +c^{2}}}{3 b d}\) \(71\)

Input:

int(1/(a+b*(d*x+c)^3),x,method=_RETURNVERBOSE)
 

Output:

1/3/b/d*sum(1/(_R^2*d^2+2*_R*c*d+c^2)*ln(x-_R),_R=RootOf(_Z^3*b*d^3+3*_Z^2 
*b*c*d^2+3*_Z*b*c^2*d+b*c^3+a))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 442, normalized size of antiderivative = 3.16 \[ \int \frac {1}{a+b (c+d x)^3} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} a b \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b d^{3} x^{3} + 6 \, a b c d^{2} x^{2} + 6 \, a b c^{2} d x + 2 \, a b c^{3} - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b d^{2} x^{2} + 4 \, a b c d x + 2 \, a b c^{2} + \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} {\left (a d x + a c\right )}}{b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d^{2} x^{2} + 2 \, a b c d x + a b c^{2} - \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d x + a b c + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b d}, \frac {6 \, \sqrt {\frac {1}{3}} a b \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} - \left (a^{2} b\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d^{2} x^{2} + 2 \, a b c d x + a b c^{2} - \left (a^{2} b\right )^{\frac {2}{3}} {\left (d x + c\right )} + \left (a^{2} b\right )^{\frac {1}{3}} a\right ) + 2 \, \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b d x + a b c + \left (a^{2} b\right )^{\frac {2}{3}}\right )}{6 \, a^{2} b d}\right ] \] Input:

integrate(1/(a+b*(d*x+c)^3),x, algorithm="fricas")
 

Output:

[1/6*(3*sqrt(1/3)*a*b*sqrt(-(a^2*b)^(1/3)/b)*log((2*a*b*d^3*x^3 + 6*a*b*c* 
d^2*x^2 + 6*a*b*c^2*d*x + 2*a*b*c^3 - a^2 + 3*sqrt(1/3)*(2*a*b*d^2*x^2 + 4 
*a*b*c*d*x + 2*a*b*c^2 + (a^2*b)^(2/3)*(d*x + c) - (a^2*b)^(1/3)*a)*sqrt(- 
(a^2*b)^(1/3)/b) - 3*(a^2*b)^(1/3)*(a*d*x + a*c))/(b*d^3*x^3 + 3*b*c*d^2*x 
^2 + 3*b*c^2*d*x + b*c^3 + a)) - (a^2*b)^(2/3)*log(a*b*d^2*x^2 + 2*a*b*c*d 
*x + a*b*c^2 - (a^2*b)^(2/3)*(d*x + c) + (a^2*b)^(1/3)*a) + 2*(a^2*b)^(2/3 
)*log(a*b*d*x + a*b*c + (a^2*b)^(2/3)))/(a^2*b*d), 1/6*(6*sqrt(1/3)*a*b*sq 
rt((a^2*b)^(1/3)/b)*arctan(sqrt(1/3)*(2*(a^2*b)^(2/3)*(d*x + c) - (a^2*b)^ 
(1/3)*a)*sqrt((a^2*b)^(1/3)/b)/a^2) - (a^2*b)^(2/3)*log(a*b*d^2*x^2 + 2*a* 
b*c*d*x + a*b*c^2 - (a^2*b)^(2/3)*(d*x + c) + (a^2*b)^(1/3)*a) + 2*(a^2*b) 
^(2/3)*log(a*b*d*x + a*b*c + (a^2*b)^(2/3)))/(a^2*b*d)]
 

Sympy [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.19 \[ \int \frac {1}{a+b (c+d x)^3} \, dx=\frac {\operatorname {RootSum} {\left (27 t^{3} a^{2} b - 1, \left ( t \mapsto t \log {\left (x + \frac {3 t a + c}{d} \right )} \right )\right )}}{d} \] Input:

integrate(1/(a+b*(d*x+c)**3),x)
 

Output:

RootSum(27*_t**3*a**2*b - 1, Lambda(_t, _t*log(x + (3*_t*a + c)/d)))/d
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {1}{a+b (c+d x)^3} \, dx=\int { \frac {1}{{\left (d x + c\right )}^{3} b + a} \,d x } \] Input:

integrate(1/(a+b*(d*x+c)^3),x, algorithm="maxima")
 

Output:

integrate(1/((d*x + c)^3*b + a), x)
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.14 \[ \int \frac {1}{a+b (c+d x)^3} \, dx=\frac {1}{3} \, \sqrt {3} \left (\frac {1}{a^{2} b d^{3}}\right )^{\frac {1}{3}} \arctan \left (-\frac {b d x + b c + \left (a b^{2}\right )^{\frac {1}{3}}}{\sqrt {3} b d x + \sqrt {3} b c - \sqrt {3} \left (a b^{2}\right )^{\frac {1}{3}}}\right ) - \frac {1}{6} \, \left (\frac {1}{a^{2} b d^{3}}\right )^{\frac {1}{3}} \log \left (4 \, {\left (\sqrt {3} b d x + \sqrt {3} b c - \sqrt {3} \left (a b^{2}\right )^{\frac {1}{3}}\right )}^{2} + 4 \, {\left (b d x + b c + \left (a b^{2}\right )^{\frac {1}{3}}\right )}^{2}\right ) + \frac {1}{3} \, \left (\frac {1}{a^{2} b d^{3}}\right )^{\frac {1}{3}} \log \left ({\left | b d x + b c + \left (a b^{2}\right )^{\frac {1}{3}} \right |}\right ) \] Input:

integrate(1/(a+b*(d*x+c)^3),x, algorithm="giac")
 

Output:

1/3*sqrt(3)*(1/(a^2*b*d^3))^(1/3)*arctan(-(b*d*x + b*c + (a*b^2)^(1/3))/(s 
qrt(3)*b*d*x + sqrt(3)*b*c - sqrt(3)*(a*b^2)^(1/3))) - 1/6*(1/(a^2*b*d^3)) 
^(1/3)*log(4*(sqrt(3)*b*d*x + sqrt(3)*b*c - sqrt(3)*(a*b^2)^(1/3))^2 + 4*( 
b*d*x + b*c + (a*b^2)^(1/3))^2) + 1/3*(1/(a^2*b*d^3))^(1/3)*log(abs(b*d*x 
+ b*c + (a*b^2)^(1/3)))
 

Mupad [B] (verification not implemented)

Time = 0.63 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.03 \[ \int \frac {1}{a+b (c+d x)^3} \, dx=\frac {\ln \left (b^{1/3}\,c+a^{1/3}+b^{1/3}\,d\,x\right )}{3\,a^{2/3}\,b^{1/3}\,d}+\frac {\ln \left (3\,b^2\,c\,d^5+3\,b^2\,d^6\,x+\frac {3\,a^{1/3}\,b^{5/3}\,d^5\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}\,d}-\frac {\ln \left (3\,b^2\,c\,d^5+3\,b^2\,d^6\,x-\frac {3\,a^{1/3}\,b^{5/3}\,d^5\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{6\,a^{2/3}\,b^{1/3}\,d} \] Input:

int(1/(a + b*(c + d*x)^3),x)
 

Output:

log(b^(1/3)*c + a^(1/3) + b^(1/3)*d*x)/(3*a^(2/3)*b^(1/3)*d) + (log(3*b^2* 
c*d^5 + 3*b^2*d^6*x + (3*a^(1/3)*b^(5/3)*d^5*(3^(1/2)*1i - 1))/2)*(3^(1/2) 
*1i - 1))/(6*a^(2/3)*b^(1/3)*d) - (log(3*b^2*c*d^5 + 3*b^2*d^6*x - (3*a^(1 
/3)*b^(5/3)*d^5*(3^(1/2)*1i + 1))/2)*(3^(1/2)*1i + 1))/(6*a^(2/3)*b^(1/3)* 
d)
 

Reduce [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.79 \[ \int \frac {1}{a+b (c+d x)^3} \, dx=\frac {-2 \sqrt {3}\, \mathit {atan} \left (\frac {a^{\frac {1}{3}}-2 b^{\frac {1}{3}} c -2 b^{\frac {1}{3}} d x}{a^{\frac {1}{3}} \sqrt {3}}\right )-\mathrm {log}\left (a^{\frac {2}{3}}-b^{\frac {1}{3}} a^{\frac {1}{3}} c -b^{\frac {1}{3}} a^{\frac {1}{3}} d x +b^{\frac {2}{3}} c^{2}+2 b^{\frac {2}{3}} c d x +b^{\frac {2}{3}} d^{2} x^{2}\right )+2 \,\mathrm {log}\left (a^{\frac {1}{3}}+b^{\frac {1}{3}} c +b^{\frac {1}{3}} d x \right )}{6 a^{\frac {2}{3}} b^{\frac {1}{3}} d} \] Input:

int(1/(a+b*(d*x+c)^3),x)
 

Output:

(a**(1/3)*( - 2*sqrt(3)*atan((a**(1/3) - 2*b**(1/3)*c - 2*b**(1/3)*d*x)/(a 
**(1/3)*sqrt(3))) - log(a**(2/3) - b**(1/3)*a**(1/3)*c - b**(1/3)*a**(1/3) 
*d*x + b**(2/3)*c**2 + 2*b**(2/3)*c*d*x + b**(2/3)*d**2*x**2) + 2*log(a**( 
1/3) + b**(1/3)*c + b**(1/3)*d*x)))/(6*b**(1/3)*a*d)