\(\int \frac {1}{\sqrt {a-b x^4} (c-d x^4)} \, dx\) [45]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 162 \[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}} \] Output:

1/2*a^(1/4)*(1-b*x^4/a)^(1/2)*EllipticPi(b^(1/4)*x/a^(1/4),-a^(1/2)*d^(1/2 
)/b^(1/2)/c^(1/2),I)/b^(1/4)/c/(-b*x^4+a)^(1/2)+1/2*a^(1/4)*(1-b*x^4/a)^(1 
/2)*EllipticPi(b^(1/4)*x/a^(1/4),a^(1/2)*d^(1/2)/b^(1/2)/c^(1/2),I)/b^(1/4 
)/c/(-b*x^4+a)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.18 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.96 \[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=-\frac {5 a c x \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )}{\sqrt {a-b x^4} \left (-c+d x^4\right ) \left (5 a c \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+2 x^4 \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )\right )} \] Input:

Integrate[1/(Sqrt[a - b*x^4]*(c - d*x^4)),x]
 

Output:

(-5*a*c*x*AppellF1[1/4, 1/2, 1, 5/4, (b*x^4)/a, (d*x^4)/c])/(Sqrt[a - b*x^ 
4]*(-c + d*x^4)*(5*a*c*AppellF1[1/4, 1/2, 1, 5/4, (b*x^4)/a, (d*x^4)/c] + 
2*x^4*(2*a*d*AppellF1[5/4, 1/2, 2, 9/4, (b*x^4)/a, (d*x^4)/c] + b*c*Appell 
F1[5/4, 3/2, 1, 9/4, (b*x^4)/a, (d*x^4)/c])))
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {925, 27, 1543, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {\int \frac {\sqrt {c}}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 c}+\frac {\int \frac {\sqrt {c}}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}\)

\(\Big \downarrow \) 1543

\(\displaystyle \frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}+\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}\)

Input:

Int[1/(Sqrt[a - b*x^4]*(c - d*x^4)),x]
 

Output:

(a^(1/4)*Sqrt[1 - (b*x^4)/a]*EllipticPi[-((Sqrt[a]*Sqrt[d])/(Sqrt[b]*Sqrt[ 
c])), ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/(2*b^(1/4)*c*Sqrt[a - b*x^4]) + (a 
^(1/4)*Sqrt[1 - (b*x^4)/a]*EllipticPi[(Sqrt[a]*Sqrt[d])/(Sqrt[b]*Sqrt[c]), 
 ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/(2*b^(1/4)*c*Sqrt[a - b*x^4])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 1543
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[ 
Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a) 
]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.59 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.13

method result size
default \(-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d -c \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 d}\) \(183\)
elliptic \(-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d -c \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}}{\underline {\hspace {1.25 ex}}\alpha ^{3}}}{8 d}\) \(183\)

Input:

int(1/(-b*x^4+a)^(1/2)/(-d*x^4+c),x,method=_RETURNVERBOSE)
 

Output:

-1/8/d*sum(1/_alpha^3*(-1/((a*d-b*c)/d)^(1/2)*arctanh(1/2*(-2*_alpha^2*b*x 
^2+2*a)/((a*d-b*c)/d)^(1/2)/(-b*x^4+a)^(1/2))-2/(1/a^(1/2)*b^(1/2))^(1/2)* 
_alpha^3*d/c*(1-b^(1/2)*x^2/a^(1/2))^(1/2)*(1+b^(1/2)*x^2/a^(1/2))^(1/2)/( 
-b*x^4+a)^(1/2)*EllipticPi(x*(1/a^(1/2)*b^(1/2))^(1/2),a^(1/2)/b^(1/2)*_al 
pha^2/c*d,(-1/a^(1/2)*b^(1/2))^(1/2)/(1/a^(1/2)*b^(1/2))^(1/2))),_alpha=Ro 
otOf(_Z^4*d-c))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=\text {Timed out} \] Input:

integrate(1/(-b*x^4+a)^(1/2)/(-d*x^4+c),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=- \int \frac {1}{- c \sqrt {a - b x^{4}} + d x^{4} \sqrt {a - b x^{4}}}\, dx \] Input:

integrate(1/(-b*x**4+a)**(1/2)/(-d*x**4+c),x)
 

Output:

-Integral(1/(-c*sqrt(a - b*x**4) + d*x**4*sqrt(a - b*x**4)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=\int { -\frac {1}{\sqrt {-b x^{4} + a} {\left (d x^{4} - c\right )}} \,d x } \] Input:

integrate(1/(-b*x^4+a)^(1/2)/(-d*x^4+c),x, algorithm="maxima")
 

Output:

-integrate(1/(sqrt(-b*x^4 + a)*(d*x^4 - c)), x)
 

Giac [F]

\[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=\int { -\frac {1}{\sqrt {-b x^{4} + a} {\left (d x^{4} - c\right )}} \,d x } \] Input:

integrate(1/(-b*x^4+a)^(1/2)/(-d*x^4+c),x, algorithm="giac")
 

Output:

integrate(-1/(sqrt(-b*x^4 + a)*(d*x^4 - c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=\int \frac {1}{\sqrt {a-b\,x^4}\,\left (c-d\,x^4\right )} \,d x \] Input:

int(1/((a - b*x^4)^(1/2)*(c - d*x^4)),x)
 

Output:

int(1/((a - b*x^4)^(1/2)*(c - d*x^4)), x)
 

Reduce [F]

\[ \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )} \, dx=\int \frac {\sqrt {-b \,x^{4}+a}}{b d \,x^{8}-a d \,x^{4}-b c \,x^{4}+a c}d x \] Input:

int(1/(-b*x^4+a)^(1/2)/(-d*x^4+c),x)
 

Output:

int(sqrt(a - b*x**4)/(a*c - a*d*x**4 - b*c*x**4 + b*d*x**8),x)