\(\int \frac {1}{(a-b x^4)^{3/2} (c-d x^4)} \, dx\) [46]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 281 \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=\frac {b x}{2 a (b c-a d) \sqrt {a-b x^4}}+\frac {b^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 a^{3/4} (b c-a d) \sqrt {a-b x^4}}-\frac {\sqrt [4]{a} d \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c (b c-a d) \sqrt {a-b x^4}}-\frac {\sqrt [4]{a} d \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c (b c-a d) \sqrt {a-b x^4}} \] Output:

1/2*b*x/a/(-a*d+b*c)/(-b*x^4+a)^(1/2)+1/2*b^(3/4)*(1-b*x^4/a)^(1/2)*Ellipt 
icF(b^(1/4)*x/a^(1/4),I)/a^(3/4)/(-a*d+b*c)/(-b*x^4+a)^(1/2)-1/2*a^(1/4)*d 
*(1-b*x^4/a)^(1/2)*EllipticPi(b^(1/4)*x/a^(1/4),-a^(1/2)*d^(1/2)/b^(1/2)/c 
^(1/2),I)/b^(1/4)/c/(-a*d+b*c)/(-b*x^4+a)^(1/2)-1/2*a^(1/4)*d*(1-b*x^4/a)^ 
(1/2)*EllipticPi(b^(1/4)*x/a^(1/4),a^(1/2)*d^(1/2)/b^(1/2)/c^(1/2),I)/b^(1 
/4)/c/(-a*d+b*c)/(-b*x^4+a)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.29 (sec) , antiderivative size = 381, normalized size of antiderivative = 1.36 \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=\frac {5 a c x \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right ) \left (-5 c \left (-2 b c+2 a d+b d x^4\right )+b d x^4 \sqrt {1-\frac {b x^4}{a}} \left (-c+d x^4\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )+2 b x^5 \left (c-d x^4\right ) \left (5 c-d x^4 \sqrt {1-\frac {b x^4}{a}} \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right ) \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )}{10 a c (-b c+a d) \sqrt {a-b x^4} \left (-c+d x^4\right ) \left (5 a c \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+2 x^4 \left (2 a d \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )+b c \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\frac {b x^4}{a},\frac {d x^4}{c}\right )\right )\right )} \] Input:

Integrate[1/((a - b*x^4)^(3/2)*(c - d*x^4)),x]
 

Output:

(5*a*c*x*AppellF1[1/4, 1/2, 1, 5/4, (b*x^4)/a, (d*x^4)/c]*(-5*c*(-2*b*c + 
2*a*d + b*d*x^4) + b*d*x^4*Sqrt[1 - (b*x^4)/a]*(-c + d*x^4)*AppellF1[5/4, 
1/2, 1, 9/4, (b*x^4)/a, (d*x^4)/c]) + 2*b*x^5*(c - d*x^4)*(5*c - d*x^4*Sqr 
t[1 - (b*x^4)/a]*AppellF1[5/4, 1/2, 1, 9/4, (b*x^4)/a, (d*x^4)/c])*(2*a*d* 
AppellF1[5/4, 1/2, 2, 9/4, (b*x^4)/a, (d*x^4)/c] + b*c*AppellF1[5/4, 3/2, 
1, 9/4, (b*x^4)/a, (d*x^4)/c]))/(10*a*c*(-(b*c) + a*d)*Sqrt[a - b*x^4]*(-c 
 + d*x^4)*(5*a*c*AppellF1[1/4, 1/2, 1, 5/4, (b*x^4)/a, (d*x^4)/c] + 2*x^4* 
(2*a*d*AppellF1[5/4, 1/2, 2, 9/4, (b*x^4)/a, (d*x^4)/c] + b*c*AppellF1[5/4 
, 3/2, 1, 9/4, (b*x^4)/a, (d*x^4)/c])))
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 269, normalized size of antiderivative = 0.96, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {931, 1021, 765, 762, 925, 27, 1543, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx\)

\(\Big \downarrow \) 931

\(\displaystyle \frac {\int \frac {-b d x^4+b c-2 a d}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

\(\Big \downarrow \) 1021

\(\displaystyle \frac {b \int \frac {1}{\sqrt {a-b x^4}}dx-2 a d \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

\(\Big \downarrow \) 765

\(\displaystyle \frac {\frac {b \sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\sqrt {1-\frac {b x^4}{a}}}dx}{\sqrt {a-b x^4}}-2 a d \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-2 a d \int \frac {1}{\sqrt {a-b x^4} \left (c-d x^4\right )}dx}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

\(\Big \downarrow \) 925

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-2 a d \left (\frac {\int \frac {\sqrt {c}}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 c}+\frac {\int \frac {\sqrt {c}}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 c}\right )}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-2 a d \left (\frac {\int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}+\frac {\int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {a-b x^4}}dx}{2 \sqrt {c}}\right )}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

\(\Big \downarrow \) 1543

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-2 a d \left (\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {c}-\sqrt {d} x^2\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}+\frac {\sqrt {1-\frac {b x^4}{a}} \int \frac {1}{\left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {1-\frac {b x^4}{a}}}dx}{2 \sqrt {c} \sqrt {a-b x^4}}\right )}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {\frac {\sqrt [4]{a} b^{3/4} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{\sqrt {a-b x^4}}-2 a d \left (\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (-\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}+\frac {\sqrt [4]{a} \sqrt {1-\frac {b x^4}{a}} \operatorname {EllipticPi}\left (\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}},\arcsin \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),-1\right )}{2 \sqrt [4]{b} c \sqrt {a-b x^4}}\right )}{2 a (b c-a d)}+\frac {b x}{2 a \sqrt {a-b x^4} (b c-a d)}\)

Input:

Int[1/((a - b*x^4)^(3/2)*(c - d*x^4)),x]
 

Output:

(b*x)/(2*a*(b*c - a*d)*Sqrt[a - b*x^4]) + ((a^(1/4)*b^(3/4)*Sqrt[1 - (b*x^ 
4)/a]*EllipticF[ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/Sqrt[a - b*x^4] - 2*a*d* 
((a^(1/4)*Sqrt[1 - (b*x^4)/a]*EllipticPi[-((Sqrt[a]*Sqrt[d])/(Sqrt[b]*Sqrt 
[c])), ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/(2*b^(1/4)*c*Sqrt[a - b*x^4]) + ( 
a^(1/4)*Sqrt[1 - (b*x^4)/a]*EllipticPi[(Sqrt[a]*Sqrt[d])/(Sqrt[b]*Sqrt[c]) 
, ArcSin[(b^(1/4)*x)/a^(1/4)], -1])/(2*b^(1/4)*c*Sqrt[a - b*x^4])))/(2*a*( 
b*c - a*d))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 765
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt 
[a + b*x^4]   Int[1/Sqrt[1 + b*(x^4/a)], x], x] /; FreeQ[{a, b}, x] && NegQ 
[b/a] &&  !GtQ[a, 0]
 

rule 925
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[ 
1/(2*c)   Int[1/(Sqrt[a + b*x^4]*(1 - Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2 
*c)   Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{a, b, 
 c, d}, x] && NeQ[b*c - a*d, 0]
 

rule 931
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[(-b)*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - 
 a*d))), x] + Simp[1/(a*n*(p + 1)*(b*c - a*d))   Int[(a + b*x^n)^(p + 1)*(c 
 + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, 
 x], x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, 
-1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, 
 c, d, n, p, q, x]
 

rule 1021
Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x 
_)^(n_)]), x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^n], x], x] + Simp[(b* 
e - a*f)/b   Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c, 
 d, e, f, n}, x]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 1543
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[ 
Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]   Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a) 
]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] &&  !GtQ[a, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.63 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.07

method result size
default \(-\frac {b x}{2 a \left (a d -b c \right ) \sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}-\frac {b \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{2 \left (a d -b c \right ) a \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}-\frac {\left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d -c \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}}{\underline {\hspace {1.25 ex}}\alpha ^{3} \left (a d -b c \right )}\right )}{8}\) \(301\)
elliptic \(-\frac {b x}{2 a \left (a d -b c \right ) \sqrt {-\left (x^{4}-\frac {a}{b}\right ) b}}-\frac {b \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticF}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, i\right )}{2 \left (a d -b c \right ) a \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, \sqrt {-b \,x^{4}+a}}-\frac {\left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} d -c \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {-2 b \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 a}{2 \sqrt {\frac {a d -b c}{d}}\, \sqrt {-b \,x^{4}+a}}\right )}{\sqrt {\frac {a d -b c}{d}}}-\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} d \sqrt {1-\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {\sqrt {b}\, x^{2}}{\sqrt {a}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {\sqrt {b}}{\sqrt {a}}}, \frac {\sqrt {a}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d}{\sqrt {b}\, c}, \frac {\sqrt {-\frac {\sqrt {b}}{\sqrt {a}}}}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}}\right )}{\sqrt {\frac {\sqrt {b}}{\sqrt {a}}}\, c \sqrt {-b \,x^{4}+a}}}{\underline {\hspace {1.25 ex}}\alpha ^{3} \left (a d -b c \right )}\right )}{8}\) \(301\)

Input:

int(1/(-b*x^4+a)^(3/2)/(-d*x^4+c),x,method=_RETURNVERBOSE)
 

Output:

-1/2*b*x/a/(a*d-b*c)/(-(x^4-a/b)*b)^(1/2)-1/2*b/(a*d-b*c)/a/(1/a^(1/2)*b^( 
1/2))^(1/2)*(1-b^(1/2)*x^2/a^(1/2))^(1/2)*(1+b^(1/2)*x^2/a^(1/2))^(1/2)/(- 
b*x^4+a)^(1/2)*EllipticF(x*(1/a^(1/2)*b^(1/2))^(1/2),I)-1/8*sum(1/_alpha^3 
/(a*d-b*c)*(-1/((a*d-b*c)/d)^(1/2)*arctanh(1/2*(-2*_alpha^2*b*x^2+2*a)/((a 
*d-b*c)/d)^(1/2)/(-b*x^4+a)^(1/2))-2/(1/a^(1/2)*b^(1/2))^(1/2)*_alpha^3*d/ 
c*(1-b^(1/2)*x^2/a^(1/2))^(1/2)*(1+b^(1/2)*x^2/a^(1/2))^(1/2)/(-b*x^4+a)^( 
1/2)*EllipticPi(x*(1/a^(1/2)*b^(1/2))^(1/2),a^(1/2)/b^(1/2)*_alpha^2/c*d,( 
-1/a^(1/2)*b^(1/2))^(1/2)/(1/a^(1/2)*b^(1/2))^(1/2))),_alpha=RootOf(_Z^4*d 
-c))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=\text {Timed out} \] Input:

integrate(1/(-b*x^4+a)^(3/2)/(-d*x^4+c),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=- \int \frac {1}{- a c \sqrt {a - b x^{4}} + a d x^{4} \sqrt {a - b x^{4}} + b c x^{4} \sqrt {a - b x^{4}} - b d x^{8} \sqrt {a - b x^{4}}}\, dx \] Input:

integrate(1/(-b*x**4+a)**(3/2)/(-d*x**4+c),x)
 

Output:

-Integral(1/(-a*c*sqrt(a - b*x**4) + a*d*x**4*sqrt(a - b*x**4) + b*c*x**4* 
sqrt(a - b*x**4) - b*d*x**8*sqrt(a - b*x**4)), x)
 

Maxima [F]

\[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=\int { -\frac {1}{{\left (-b x^{4} + a\right )}^{\frac {3}{2}} {\left (d x^{4} - c\right )}} \,d x } \] Input:

integrate(1/(-b*x^4+a)^(3/2)/(-d*x^4+c),x, algorithm="maxima")
 

Output:

-integrate(1/((-b*x^4 + a)^(3/2)*(d*x^4 - c)), x)
 

Giac [F]

\[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=\int { -\frac {1}{{\left (-b x^{4} + a\right )}^{\frac {3}{2}} {\left (d x^{4} - c\right )}} \,d x } \] Input:

integrate(1/(-b*x^4+a)^(3/2)/(-d*x^4+c),x, algorithm="giac")
 

Output:

integrate(-1/((-b*x^4 + a)^(3/2)*(d*x^4 - c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=\int \frac {1}{{\left (a-b\,x^4\right )}^{3/2}\,\left (c-d\,x^4\right )} \,d x \] Input:

int(1/((a - b*x^4)^(3/2)*(c - d*x^4)),x)
 

Output:

int(1/((a - b*x^4)^(3/2)*(c - d*x^4)), x)
 

Reduce [F]

\[ \int \frac {1}{\left (a-b x^4\right )^{3/2} \left (c-d x^4\right )} \, dx=\int \frac {\sqrt {-b \,x^{4}+a}}{-b^{2} d \,x^{12}+2 a b d \,x^{8}+b^{2} c \,x^{8}-a^{2} d \,x^{4}-2 a b c \,x^{4}+a^{2} c}d x \] Input:

int(1/(-b*x^4+a)^(3/2)/(-d*x^4+c),x)
 

Output:

int(sqrt(a - b*x**4)/(a**2*c - a**2*d*x**4 - 2*a*b*c*x**4 + 2*a*b*d*x**8 + 
 b**2*c*x**8 - b**2*d*x**12),x)