\(\int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx\) [464]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 648 \[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=-\frac {214 c x^2 \sqrt {c+d x^3}}{91 d^2}-\frac {2 x^5 \sqrt {c+d x^3}}{13 d}-\frac {12248 c^2 \sqrt {c+d x^3}}{91 d^{8/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac {32 \sqrt {3} c^{13/6} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{d^{8/3}}+\frac {32 c^{13/6} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{d^{8/3}}-\frac {32 c^{13/6} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{d^{8/3}}+\frac {6124 \sqrt [4]{3} \sqrt {2-\sqrt {3}} c^{7/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{91 d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {12248 \sqrt {2} c^{7/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{91 \sqrt [4]{3} d^{8/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \] Output:

-214/91*c*x^2*(d*x^3+c)^(1/2)/d^2-2/13*x^5*(d*x^3+c)^(1/2)/d-12248/91*c^2* 
(d*x^3+c)^(1/2)/d^(8/3)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)-32*3^(1/2)*c^(13/6 
)*arctan(3^(1/2)*c^(1/6)*(c^(1/3)+d^(1/3)*x)/(d*x^3+c)^(1/2))/d^(8/3)+32*c 
^(13/6)*arctanh(1/3*(c^(1/3)+d^(1/3)*x)^2/c^(1/6)/(d*x^3+c)^(1/2))/d^(8/3) 
-32*c^(13/6)*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))/d^(8/3)+6124/91*3^(1/4)* 
(1/2*6^(1/2)-1/2*2^(1/2))*c^(7/3)*(c^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^ 
(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)*EllipticE((( 
1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2* 
I)/d^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2) 
^(1/2)/(d*x^3+c)^(1/2)-12248/273*2^(1/2)*c^(7/3)*(c^(1/3)+d^(1/3)*x)*((c^( 
2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/ 
2)*EllipticF(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)* 
x),I*3^(1/2)+2*I)*3^(3/4)/d^(8/3)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1/2) 
)*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.38 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.23 \[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\frac {-20 \left (107 c^2 x^2+114 c d x^5+7 d^2 x^8\right )+2140 c^2 x^2 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+1531 c d x^5 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )}{910 d^2 \sqrt {c+d x^3}} \] Input:

Integrate[(x^7*Sqrt[c + d*x^3])/(8*c - d*x^3),x]
 

Output:

(-20*(107*c^2*x^2 + 114*c*d*x^5 + 7*d^2*x^8) + 2140*c^2*x^2*Sqrt[1 + (d*x^ 
3)/c]*AppellF1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), (d*x^3)/(8*c)] + 1531*c*d*x 
^5*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/3, -((d*x^3)/c), (d*x^3)/(8 
*c)])/(910*d^2*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 1.80 (sec) , antiderivative size = 656, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {978, 27, 1052, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx\)

\(\Big \downarrow \) 978

\(\displaystyle \frac {2 \int \frac {c x^4 \left (107 d x^3+80 c\right )}{2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{13 d}-\frac {2 x^5 \sqrt {c+d x^3}}{13 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c \int \frac {x^4 \left (107 d x^3+80 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{13 d}-\frac {2 x^5 \sqrt {c+d x^3}}{13 d}\)

\(\Big \downarrow \) 1052

\(\displaystyle \frac {c \left (\frac {2 \int \frac {2 c d x \left (1531 d x^3+856 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{7 d^2}-\frac {214 x^2 \sqrt {c+d x^3}}{7 d}\right )}{13 d}-\frac {2 x^5 \sqrt {c+d x^3}}{13 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c \left (\frac {4 c \int \frac {x \left (1531 d x^3+856 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{7 d}-\frac {214 x^2 \sqrt {c+d x^3}}{7 d}\right )}{13 d}-\frac {2 x^5 \sqrt {c+d x^3}}{13 d}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {c \left (\frac {4 c \int \left (\frac {13104 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}-\frac {1531 x}{\sqrt {d x^3+c}}\right )dx}{7 d}-\frac {214 x^2 \sqrt {c+d x^3}}{7 d}\right )}{13 d}-\frac {2 x^5 \sqrt {c+d x^3}}{13 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {c \left (\frac {4 c \left (-\frac {3062 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {1531 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {728 \sqrt {3} \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{d^{2/3}}+\frac {728 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{d^{2/3}}-\frac {728 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{d^{2/3}}-\frac {3062 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}\right )}{7 d}-\frac {214 x^2 \sqrt {c+d x^3}}{7 d}\right )}{13 d}-\frac {2 x^5 \sqrt {c+d x^3}}{13 d}\)

Input:

Int[(x^7*Sqrt[c + d*x^3])/(8*c - d*x^3),x]
 

Output:

(-2*x^5*Sqrt[c + d*x^3])/(13*d) + (c*((-214*x^2*Sqrt[c + d*x^3])/(7*d) + ( 
4*c*((-3062*Sqrt[c + d*x^3])/(d^(2/3)*((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)) 
 - (728*Sqrt[3]*c^(1/6)*ArcTan[(Sqrt[3]*c^(1/6)*(c^(1/3) + d^(1/3)*x))/Sqr 
t[c + d*x^3]])/d^(2/3) + (728*c^(1/6)*ArcTanh[(c^(1/3) + d^(1/3)*x)^2/(3*c 
^(1/6)*Sqrt[c + d*x^3])])/d^(2/3) - (728*c^(1/6)*ArcTanh[Sqrt[c + d*x^3]/( 
3*Sqrt[c])])/d^(2/3) + (1531*3^(1/4)*Sqrt[2 - Sqrt[3]]*c^(1/3)*(c^(1/3) + 
d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3]) 
*c^(1/3) + d^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3) 
*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(d^(2/3)*Sqrt[( 
c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt 
[c + d*x^3]) - (3062*Sqrt[2]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - 
 c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*E 
llipticF[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) 
 + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + 
 d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3])))/(7* 
d)))/(13*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 978
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)* 
((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Simp[e^n/(b*(m + n*(p + q) + 
1))   Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 
 1) + (a*d*(m - n + 1) - n*q*(b*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c 
, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && GtQ[m - n 
 + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1052
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m 
- n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q + 1) + 
 1))), x] - Simp[g^n/(b*d*(m + n*(p + q + 1) + 1))   Int[(g*x)^(m - n)*(a + 
 b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*( 
f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x] /; FreeQ[ 
{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.27 (sec) , antiderivative size = 884, normalized size of antiderivative = 1.36

method result size
risch \(\text {Expression too large to display}\) \(884\)
elliptic \(\text {Expression too large to display}\) \(889\)
default \(\text {Expression too large to display}\) \(1788\)

Input:

int(x^7*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x,method=_RETURNVERBOSE)
 

Output:

-2/91*x^2*(7*d*x^3+107*c)*(d*x^3+c)^(1/2)/d^2-4/91/d^2*c^2*(-3062/3*I*3^(1 
/2)/d*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^( 
1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c* 
d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1 
/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3 
+c)^(1/2)*((-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*Elliptic 
E(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3 
^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2 
)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*Ellipti 
cF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))* 
3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^ 
2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)))+1456/3*I/d^3*2^(1/2)*sum 
(1/_alpha*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c* 
d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^ 
(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d 
^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^ 
2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2) 
^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2 
)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1 
/18/d*(2*I*(-c*d^2)^(1/3)*_alpha^2*3^(1/2)*d-I*(-c*d^2)^(2/3)*_alpha*3^...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2442 vs. \(2 (462) = 924\).

Time = 15.99 (sec) , antiderivative size = 2442, normalized size of antiderivative = 3.77 \[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\text {Too large to display} \] Input:

integrate(x^7*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x, algorithm="fricas")
 

Output:

2/273*(728*d^3*(c^13/d^16)^(1/6)*log(33554432*((d^16*x^9 + 318*c*d^15*x^6 
+ 1200*c^2*d^14*x^3 + 640*c^3*d^13)*(c^13/d^16)^(5/6) + 6*(c^11*d^2*x^7 + 
80*c^12*d*x^4 + 160*c^13*x + 6*(5*c^3*d^12*x^5 + 32*c^4*d^11*x^2)*(c^13/d^ 
16)^(2/3) + (7*c^7*d^7*x^6 + 152*c^8*d^6*x^3 + 64*c^9*d^5)*(c^13/d^16)^(1/ 
3))*sqrt(d*x^3 + c) + 18*(5*c^5*d^10*x^7 + 64*c^6*d^9*x^4 + 32*c^7*d^8*x)* 
sqrt(c^13/d^16) + 18*(c^9*d^5*x^8 + 38*c^10*d^4*x^5 + 64*c^11*d^3*x^2)*(c^ 
13/d^16)^(1/6))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 728* 
d^3*(c^13/d^16)^(1/6)*log(-33554432*((d^16*x^9 + 318*c*d^15*x^6 + 1200*c^2 
*d^14*x^3 + 640*c^3*d^13)*(c^13/d^16)^(5/6) - 6*(c^11*d^2*x^7 + 80*c^12*d* 
x^4 + 160*c^13*x + 6*(5*c^3*d^12*x^5 + 32*c^4*d^11*x^2)*(c^13/d^16)^(2/3) 
+ (7*c^7*d^7*x^6 + 152*c^8*d^6*x^3 + 64*c^9*d^5)*(c^13/d^16)^(1/3))*sqrt(d 
*x^3 + c) + 18*(5*c^5*d^10*x^7 + 64*c^6*d^9*x^4 + 32*c^7*d^8*x)*sqrt(c^13/ 
d^16) + 18*(c^9*d^5*x^8 + 38*c^10*d^4*x^5 + 64*c^11*d^3*x^2)*(c^13/d^16)^( 
1/6))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) + 18372*c^2*sqrt 
(d)*weierstrassZeta(0, -4*c/d, weierstrassPInverse(0, -4*c/d, x)) - 364*(s 
qrt(-3)*d^3 - d^3)*(c^13/d^16)^(1/6)*log(33554432*((d^16*x^9 + 318*c*d^15* 
x^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13 + sqrt(-3)*(d^16*x^9 + 318*c*d^15*x 
^6 + 1200*c^2*d^14*x^3 + 640*c^3*d^13))*(c^13/d^16)^(5/6) + 6*(2*c^11*d^2* 
x^7 + 160*c^12*d*x^4 + 320*c^13*x - 6*(5*c^3*d^12*x^5 + 32*c^4*d^11*x^2 - 
sqrt(-3)*(5*c^3*d^12*x^5 + 32*c^4*d^11*x^2))*(c^13/d^16)^(2/3) - (7*c^7...
 

Sympy [F]

\[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=- \int \frac {x^{7} \sqrt {c + d x^{3}}}{- 8 c + d x^{3}}\, dx \] Input:

integrate(x**7*(d*x**3+c)**(1/2)/(-d*x**3+8*c),x)
 

Output:

-Integral(x**7*sqrt(c + d*x**3)/(-8*c + d*x**3), x)
 

Maxima [F]

\[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\int { -\frac {\sqrt {d x^{3} + c} x^{7}}{d x^{3} - 8 \, c} \,d x } \] Input:

integrate(x^7*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x, algorithm="maxima")
 

Output:

-integrate(sqrt(d*x^3 + c)*x^7/(d*x^3 - 8*c), x)
 

Giac [F]

\[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\int { -\frac {\sqrt {d x^{3} + c} x^{7}}{d x^{3} - 8 \, c} \,d x } \] Input:

integrate(x^7*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x, algorithm="giac")
 

Output:

integrate(-sqrt(d*x^3 + c)*x^7/(d*x^3 - 8*c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\int \frac {x^7\,\sqrt {d\,x^3+c}}{8\,c-d\,x^3} \,d x \] Input:

int((x^7*(c + d*x^3)^(1/2))/(8*c - d*x^3),x)
 

Output:

int((x^7*(c + d*x^3)^(1/2))/(8*c - d*x^3), x)
 

Reduce [F]

\[ \int \frac {x^7 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\frac {-\frac {214 \sqrt {d \,x^{3}+c}\, c \,x^{2}}{91}-\frac {2 \sqrt {d \,x^{3}+c}\, d \,x^{5}}{13}+\frac {6124 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{-d^{2} x^{6}+7 c d \,x^{3}+8 c^{2}}d x \right ) c^{2} d}{91}+\frac {3424 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{-d^{2} x^{6}+7 c d \,x^{3}+8 c^{2}}d x \right ) c^{3}}{91}}{d^{2}} \] Input:

int(x^7*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x)
 

Output:

(2*( - 107*sqrt(c + d*x**3)*c*x**2 - 7*sqrt(c + d*x**3)*d*x**5 + 3062*int( 
(sqrt(c + d*x**3)*x**4)/(8*c**2 + 7*c*d*x**3 - d**2*x**6),x)*c**2*d + 1712 
*int((sqrt(c + d*x**3)*x)/(8*c**2 + 7*c*d*x**3 - d**2*x**6),x)*c**3))/(91* 
d**2)