\(\int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx\) [465]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 624 \[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=-\frac {2 x^2 \sqrt {c+d x^3}}{7 d}-\frac {118 c \sqrt {c+d x^3}}{7 d^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}-\frac {4 \sqrt {3} c^{7/6} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{d^{5/3}}+\frac {4 c^{7/6} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{d^{5/3}}-\frac {4 c^{7/6} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{d^{5/3}}+\frac {59 \sqrt [4]{3} \sqrt {2-\sqrt {3}} c^{4/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right )|-7-4 \sqrt {3}\right )}{7 d^{5/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {118 \sqrt {2} c^{4/3} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x}\right ),-7-4 \sqrt {3}\right )}{7 \sqrt [4]{3} d^{5/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}} \] Output:

-2/7*x^2*(d*x^3+c)^(1/2)/d-118/7*c*(d*x^3+c)^(1/2)/d^(5/3)/((1+3^(1/2))*c^ 
(1/3)+d^(1/3)*x)-4*3^(1/2)*c^(7/6)*arctan(3^(1/2)*c^(1/6)*(c^(1/3)+d^(1/3) 
*x)/(d*x^3+c)^(1/2))/d^(5/3)+4*c^(7/6)*arctanh(1/3*(c^(1/3)+d^(1/3)*x)^2/c 
^(1/6)/(d*x^3+c)^(1/2))/d^(5/3)-4*c^(7/6)*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1 
/2))/d^(5/3)+59/7*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*c^(4/3)*(c^(1/3)+d^(1/ 
3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^(1/3)+d^(1/3 
)*x)^2)^(1/2)*EllipticE(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^(1/2))*c^(1/ 
3)+d^(1/3)*x),I*3^(1/2)+2*I)/d^(5/3)/(c^(1/3)*(c^(1/3)+d^(1/3)*x)/((1+3^(1 
/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)-118/21*2^(1/2)*c^(4/3)*(c 
^(1/3)+d^(1/3)*x)*((c^(2/3)-c^(1/3)*d^(1/3)*x+d^(2/3)*x^2)/((1+3^(1/2))*c^ 
(1/3)+d^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*c^(1/3)+d^(1/3)*x)/((1+3^ 
(1/2))*c^(1/3)+d^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/d^(5/3)/(c^(1/3)*(c^(1/3) 
+d^(1/3)*x)/((1+3^(1/2))*c^(1/3)+d^(1/3)*x)^2)^(1/2)/(d*x^3+c)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.47 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.21 \[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\frac {x^2 \left (-80 \left (c+d x^3\right )+80 c \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {2}{3},\frac {1}{2},1,\frac {5}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )+59 d x^3 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {5}{3},\frac {1}{2},1,\frac {8}{3},-\frac {d x^3}{c},\frac {d x^3}{8 c}\right )\right )}{280 d \sqrt {c+d x^3}} \] Input:

Integrate[(x^4*Sqrt[c + d*x^3])/(8*c - d*x^3),x]
 

Output:

(x^2*(-80*(c + d*x^3) + 80*c*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3 
, -((d*x^3)/c), (d*x^3)/(8*c)] + 59*d*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3 
, 1/2, 1, 8/3, -((d*x^3)/c), (d*x^3)/(8*c)]))/(280*d*Sqrt[c + d*x^3])
 

Rubi [A] (verified)

Time = 1.62 (sec) , antiderivative size = 626, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {978, 27, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx\)

\(\Big \downarrow \) 978

\(\displaystyle \frac {2 \int \frac {c x \left (59 d x^3+32 c\right )}{2 \left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{7 d}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {c \int \frac {x \left (59 d x^3+32 c\right )}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}dx}{7 d}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {c \int \left (\frac {504 c x}{\left (8 c-d x^3\right ) \sqrt {d x^3+c}}-\frac {59 x}{\sqrt {d x^3+c}}\right )dx}{7 d}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {c \left (-\frac {118 \sqrt {2} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}+\frac {59 \sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right ) \sqrt {\frac {c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{d} x+\left (1-\sqrt {3}\right ) \sqrt [3]{c}}{\sqrt [3]{d} x+\left (1+\sqrt {3}\right ) \sqrt [3]{c}}\right )|-7-4 \sqrt {3}\right )}{d^{2/3} \sqrt {\frac {\sqrt [3]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )^2}} \sqrt {c+d x^3}}-\frac {28 \sqrt {3} \sqrt [6]{c} \arctan \left (\frac {\sqrt {3} \sqrt [6]{c} \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{\sqrt {c+d x^3}}\right )}{d^{2/3}}+\frac {28 \sqrt [6]{c} \text {arctanh}\left (\frac {\left (\sqrt [3]{c}+\sqrt [3]{d} x\right )^2}{3 \sqrt [6]{c} \sqrt {c+d x^3}}\right )}{d^{2/3}}-\frac {28 \sqrt [6]{c} \text {arctanh}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{d^{2/3}}-\frac {118 \sqrt {c+d x^3}}{d^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{c}+\sqrt [3]{d} x\right )}\right )}{7 d}-\frac {2 x^2 \sqrt {c+d x^3}}{7 d}\)

Input:

Int[(x^4*Sqrt[c + d*x^3])/(8*c - d*x^3),x]
 

Output:

(-2*x^2*Sqrt[c + d*x^3])/(7*d) + (c*((-118*Sqrt[c + d*x^3])/(d^(2/3)*((1 + 
 Sqrt[3])*c^(1/3) + d^(1/3)*x)) - (28*Sqrt[3]*c^(1/6)*ArcTan[(Sqrt[3]*c^(1 
/6)*(c^(1/3) + d^(1/3)*x))/Sqrt[c + d*x^3]])/d^(2/3) + (28*c^(1/6)*ArcTanh 
[(c^(1/3) + d^(1/3)*x)^2/(3*c^(1/6)*Sqrt[c + d*x^3])])/d^(2/3) - (28*c^(1/ 
6)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/d^(2/3) + (59*3^(1/4)*Sqrt[2 - Sq 
rt[3]]*c^(1/3)*(c^(1/3) + d^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d 
^(2/3)*x^2)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^2]*EllipticE[ArcSin[((1 - 
Sqrt[3])*c^(1/3) + d^(1/3)*x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4 
*Sqrt[3]])/(d^(2/3)*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^ 
(1/3) + d^(1/3)*x)^2]*Sqrt[c + d*x^3]) - (118*Sqrt[2]*c^(1/3)*(c^(1/3) + d 
^(1/3)*x)*Sqrt[(c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2)/((1 + Sqrt[3])* 
c^(1/3) + d^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*c^(1/3) + d^(1/3)* 
x)/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*d^(2/3) 
*Sqrt[(c^(1/3)*(c^(1/3) + d^(1/3)*x))/((1 + Sqrt[3])*c^(1/3) + d^(1/3)*x)^ 
2]*Sqrt[c + d*x^3])))/(7*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 978
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)* 
((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Simp[e^n/(b*(m + n*(p + q) + 
1))   Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 
 1) + (a*d*(m - n + 1) - n*q*(b*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c 
, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && GtQ[m - n 
 + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.79 (sec) , antiderivative size = 867, normalized size of antiderivative = 1.39

method result size
elliptic \(\text {Expression too large to display}\) \(867\)
risch \(\text {Expression too large to display}\) \(872\)
default \(\text {Expression too large to display}\) \(1310\)

Input:

int(x^4*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x,method=_RETURNVERBOSE)
 

Output:

-2/7*x^2*(d*x^3+c)^(1/2)/d+118/21*I*c/d^2*3^(1/2)*(-c*d^2)^(1/3)*(I*(x+1/2 
/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3) 
)^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c 
*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^( 
1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-c*d^2)^(1 
/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/d*(-c* 
d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2) 
,(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^ 
2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c 
*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2 
),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d 
^2)^(1/3)))^(1/2)))-8/3*I*c/d^4*2^(1/2)*sum(1/_alpha*(-c*d^2)^(1/3)*(1/2*I 
*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1 
/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)) 
)^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c* 
d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^( 
1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3)) 
*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2 
)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*_alph 
a^2*3^(1/2)*d-I*(-c*d^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*c*d-3*(-c*d^2)^...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2428 vs. \(2 (442) = 884\).

Time = 4.32 (sec) , antiderivative size = 2428, normalized size of antiderivative = 3.89 \[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\text {Too large to display} \] Input:

integrate(x^4*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x, algorithm="fricas")
 

Output:

-1/21*(6*sqrt(d*x^3 + c)*d*x^2 - 14*d^2*(c^7/d^10)^(1/6)*log(1024*((d^11*x 
^9 + 318*c*d^10*x^6 + 1200*c^2*d^9*x^3 + 640*c^3*d^8)*(c^7/d^10)^(5/6) + 6 
*(c^6*d^2*x^7 + 80*c^7*d*x^4 + 160*c^8*x + 6*(5*c^2*d^8*x^5 + 32*c^3*d^7*x 
^2)*(c^7/d^10)^(2/3) + (7*c^4*d^5*x^6 + 152*c^5*d^4*x^3 + 64*c^6*d^3)*(c^7 
/d^10)^(1/3))*sqrt(d*x^3 + c) + 18*(5*c^3*d^7*x^7 + 64*c^4*d^6*x^4 + 32*c^ 
5*d^5*x)*sqrt(c^7/d^10) + 18*(c^5*d^4*x^8 + 38*c^6*d^3*x^5 + 64*c^7*d^2*x^ 
2)*(c^7/d^10)^(1/6))/(d^3*x^9 - 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) + 
 14*d^2*(c^7/d^10)^(1/6)*log(-1024*((d^11*x^9 + 318*c*d^10*x^6 + 1200*c^2* 
d^9*x^3 + 640*c^3*d^8)*(c^7/d^10)^(5/6) - 6*(c^6*d^2*x^7 + 80*c^7*d*x^4 + 
160*c^8*x + 6*(5*c^2*d^8*x^5 + 32*c^3*d^7*x^2)*(c^7/d^10)^(2/3) + (7*c^4*d 
^5*x^6 + 152*c^5*d^4*x^3 + 64*c^6*d^3)*(c^7/d^10)^(1/3))*sqrt(d*x^3 + c) + 
 18*(5*c^3*d^7*x^7 + 64*c^4*d^6*x^4 + 32*c^5*d^5*x)*sqrt(c^7/d^10) + 18*(c 
^5*d^4*x^8 + 38*c^6*d^3*x^5 + 64*c^7*d^2*x^2)*(c^7/d^10)^(1/6))/(d^3*x^9 - 
 24*c*d^2*x^6 + 192*c^2*d*x^3 - 512*c^3)) - 354*c*sqrt(d)*weierstrassZeta( 
0, -4*c/d, weierstrassPInverse(0, -4*c/d, x)) + 7*(sqrt(-3)*d^2 - d^2)*(c^ 
7/d^10)^(1/6)*log(1024*((d^11*x^9 + 318*c*d^10*x^6 + 1200*c^2*d^9*x^3 + 64 
0*c^3*d^8 + sqrt(-3)*(d^11*x^9 + 318*c*d^10*x^6 + 1200*c^2*d^9*x^3 + 640*c 
^3*d^8))*(c^7/d^10)^(5/6) + 6*(2*c^6*d^2*x^7 + 160*c^7*d*x^4 + 320*c^8*x - 
 6*(5*c^2*d^8*x^5 + 32*c^3*d^7*x^2 - sqrt(-3)*(5*c^2*d^8*x^5 + 32*c^3*d^7* 
x^2))*(c^7/d^10)^(2/3) - (7*c^4*d^5*x^6 + 152*c^5*d^4*x^3 + 64*c^6*d^3 ...
 

Sympy [F]

\[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=- \int \frac {x^{4} \sqrt {c + d x^{3}}}{- 8 c + d x^{3}}\, dx \] Input:

integrate(x**4*(d*x**3+c)**(1/2)/(-d*x**3+8*c),x)
 

Output:

-Integral(x**4*sqrt(c + d*x**3)/(-8*c + d*x**3), x)
 

Maxima [F]

\[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\int { -\frac {\sqrt {d x^{3} + c} x^{4}}{d x^{3} - 8 \, c} \,d x } \] Input:

integrate(x^4*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x, algorithm="maxima")
 

Output:

-integrate(sqrt(d*x^3 + c)*x^4/(d*x^3 - 8*c), x)
 

Giac [F]

\[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\int { -\frac {\sqrt {d x^{3} + c} x^{4}}{d x^{3} - 8 \, c} \,d x } \] Input:

integrate(x^4*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x, algorithm="giac")
 

Output:

integrate(-sqrt(d*x^3 + c)*x^4/(d*x^3 - 8*c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\int \frac {x^4\,\sqrt {d\,x^3+c}}{8\,c-d\,x^3} \,d x \] Input:

int((x^4*(c + d*x^3)^(1/2))/(8*c - d*x^3),x)
 

Output:

int((x^4*(c + d*x^3)^(1/2))/(8*c - d*x^3), x)
 

Reduce [F]

\[ \int \frac {x^4 \sqrt {c+d x^3}}{8 c-d x^3} \, dx=\frac {-2 \sqrt {d \,x^{3}+c}\, x^{2}+59 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x^{4}}{-d^{2} x^{6}+7 c d \,x^{3}+8 c^{2}}d x \right ) c d +32 \left (\int \frac {\sqrt {d \,x^{3}+c}\, x}{-d^{2} x^{6}+7 c d \,x^{3}+8 c^{2}}d x \right ) c^{2}}{7 d} \] Input:

int(x^4*(d*x^3+c)^(1/2)/(-d*x^3+8*c),x)
 

Output:

( - 2*sqrt(c + d*x**3)*x**2 + 59*int((sqrt(c + d*x**3)*x**4)/(8*c**2 + 7*c 
*d*x**3 - d**2*x**6),x)*c*d + 32*int((sqrt(c + d*x**3)*x)/(8*c**2 + 7*c*d* 
x**3 - d**2*x**6),x)*c**2)/(7*d)