\(\int \frac {x}{(a+b x^4)^2 \sqrt {c+d x^4}} \, dx\) [261]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 104 \[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {b x^2 \sqrt {c+d x^4}}{4 a (b c-a d) \left (a+b x^4\right )}+\frac {(b c-2 a d) \arctan \left (\frac {\sqrt {b c-a d} x^2}{\sqrt {a} \sqrt {c+d x^4}}\right )}{4 a^{3/2} (b c-a d)^{3/2}} \] Output:

1/4*b*x^2*(d*x^4+c)^(1/2)/a/(-a*d+b*c)/(b*x^4+a)+1/4*(-2*a*d+b*c)*arctan(( 
-a*d+b*c)^(1/2)*x^2/a^(1/2)/(d*x^4+c)^(1/2))/a^(3/2)/(-a*d+b*c)^(3/2)
 

Mathematica [A] (verified)

Time = 1.13 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.19 \[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=-\frac {b x^2 \sqrt {c+d x^4}}{4 a (-b c+a d) \left (a+b x^4\right )}+\frac {(b c-2 a d) \arctan \left (\frac {a \sqrt {d}+b \sqrt {d} x^4+b x^2 \sqrt {c+d x^4}}{\sqrt {a} \sqrt {b c-a d}}\right )}{4 a^{3/2} (b c-a d)^{3/2}} \] Input:

Integrate[x/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

-1/4*(b*x^2*Sqrt[c + d*x^4])/(a*(-(b*c) + a*d)*(a + b*x^4)) + ((b*c - 2*a* 
d)*ArcTan[(a*Sqrt[d] + b*Sqrt[d]*x^4 + b*x^2*Sqrt[c + d*x^4])/(Sqrt[a]*Sqr 
t[b*c - a*d])])/(4*a^(3/2)*(b*c - a*d)^(3/2))
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {965, 296, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 965

\(\displaystyle \frac {1}{2} \int \frac {1}{\left (b x^4+a\right )^2 \sqrt {d x^4+c}}dx^2\)

\(\Big \downarrow \) 296

\(\displaystyle \frac {1}{2} \left (\frac {(b c-2 a d) \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx^2}{2 a (b c-a d)}+\frac {b x^2 \sqrt {c+d x^4}}{2 a \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {1}{2} \left (\frac {(b c-2 a d) \int \frac {1}{a-(a d-b c) x^4}d\frac {x^2}{\sqrt {d x^4+c}}}{2 a (b c-a d)}+\frac {b x^2 \sqrt {c+d x^4}}{2 a \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{2} \left (\frac {(b c-2 a d) \arctan \left (\frac {x^2 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^4}}\right )}{2 a^{3/2} (b c-a d)^{3/2}}+\frac {b x^2 \sqrt {c+d x^4}}{2 a \left (a+b x^4\right ) (b c-a d)}\right )\)

Input:

Int[x/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

((b*x^2*Sqrt[c + d*x^4])/(2*a*(b*c - a*d)*(a + b*x^4)) + ((b*c - 2*a*d)*Ar 
cTan[(Sqrt[b*c - a*d]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(2*a^(3/2)*(b*c - a 
*d)^(3/2)))/2
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 296
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[(b*c + 2*(p + 1)*(b*c - a*d))/(2*a*(p + 1)*(b*c - a*d))   Int[ 
(a + b*x^2)^(p + 1)*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && N 
eQ[b*c - a*d, 0] && EqQ[2*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1 
]) && NeQ[p, -1]
 

rule 965
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), 
 x_Symbol] :> With[{k = GCD[m + 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 
 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /; Free 
Q[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]
 
Maple [A] (verified)

Time = 0.78 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.87

method result size
pseudoelliptic \(\frac {-\frac {b \sqrt {d \,x^{4}+c}\, x^{2}}{b \,x^{4}+a}+\frac {\left (2 a d -c b \right ) \operatorname {arctanh}\left (\frac {a \sqrt {d \,x^{4}+c}}{x^{2} \sqrt {a \left (a d -c b \right )}}\right )}{\sqrt {a \left (a d -c b \right )}}}{4 \left (a d -c b \right ) a}\) \(90\)
default \(-\frac {\sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a \left (a d -c b \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 b a \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}-\frac {\sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a \left (a d -c b \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 b a \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}-\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 a \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}+\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 a \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}\) \(867\)
elliptic \(-\frac {\sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a \left (a d -c b \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 b a \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}-\frac {\sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a \left (a d -c b \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 b a \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}-\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 a \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}+\frac {\ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 a \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}\) \(867\)

Input:

int(x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/(a*d-b*c)/a*(-b*(d*x^4+c)^(1/2)*x^2/(b*x^4+a)+(2*a*d-b*c)/(a*(a*d-b*c) 
)^(1/2)*arctanh(a*(d*x^4+c)^(1/2)/x^2/(a*(a*d-b*c))^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 213 vs. \(2 (88) = 176\).

Time = 0.17 (sec) , antiderivative size = 467, normalized size of antiderivative = 4.49 \[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\left [\frac {4 \, \sqrt {d x^{4} + c} {\left (a b^{2} c - a^{2} b d\right )} x^{2} - {\left ({\left (b^{2} c - 2 \, a b d\right )} x^{4} + a b c - 2 \, a^{2} d\right )} \sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{8} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{4} + a^{2} c^{2} - 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{6} - a c x^{2}\right )} \sqrt {d x^{4} + c} \sqrt {-a b c + a^{2} d}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}\right )}{16 \, {\left (a^{3} b^{2} c^{2} - 2 \, a^{4} b c d + a^{5} d^{2} + {\left (a^{2} b^{3} c^{2} - 2 \, a^{3} b^{2} c d + a^{4} b d^{2}\right )} x^{4}\right )}}, \frac {2 \, \sqrt {d x^{4} + c} {\left (a b^{2} c - a^{2} b d\right )} x^{2} + {\left ({\left (b^{2} c - 2 \, a b d\right )} x^{4} + a b c - 2 \, a^{2} d\right )} \sqrt {a b c - a^{2} d} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{4} - a c\right )} \sqrt {d x^{4} + c} \sqrt {a b c - a^{2} d}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{6} + {\left (a b c^{2} - a^{2} c d\right )} x^{2}\right )}}\right )}{8 \, {\left (a^{3} b^{2} c^{2} - 2 \, a^{4} b c d + a^{5} d^{2} + {\left (a^{2} b^{3} c^{2} - 2 \, a^{3} b^{2} c d + a^{4} b d^{2}\right )} x^{4}\right )}}\right ] \] Input:

integrate(x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")
 

Output:

[1/16*(4*sqrt(d*x^4 + c)*(a*b^2*c - a^2*b*d)*x^2 - ((b^2*c - 2*a*b*d)*x^4 
+ a*b*c - 2*a^2*d)*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2* 
d^2)*x^8 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^4 + a^2*c^2 - 4*((b*c - 2*a*d)*x^6 
- a*c*x^2)*sqrt(d*x^4 + c)*sqrt(-a*b*c + a^2*d))/(b^2*x^8 + 2*a*b*x^4 + a^ 
2)))/(a^3*b^2*c^2 - 2*a^4*b*c*d + a^5*d^2 + (a^2*b^3*c^2 - 2*a^3*b^2*c*d + 
 a^4*b*d^2)*x^4), 1/8*(2*sqrt(d*x^4 + c)*(a*b^2*c - a^2*b*d)*x^2 + ((b^2*c 
 - 2*a*b*d)*x^4 + a*b*c - 2*a^2*d)*sqrt(a*b*c - a^2*d)*arctan(1/2*((b*c - 
2*a*d)*x^4 - a*c)*sqrt(d*x^4 + c)*sqrt(a*b*c - a^2*d)/((a*b*c*d - a^2*d^2) 
*x^6 + (a*b*c^2 - a^2*c*d)*x^2)))/(a^3*b^2*c^2 - 2*a^4*b*c*d + a^5*d^2 + ( 
a^2*b^3*c^2 - 2*a^3*b^2*c*d + a^4*b*d^2)*x^4)]
 

Sympy [F]

\[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x}{\left (a + b x^{4}\right )^{2} \sqrt {c + d x^{4}}}\, dx \] Input:

integrate(x/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)
 

Output:

Integral(x/((a + b*x**4)**2*sqrt(c + d*x**4)), x)
 

Maxima [F]

\[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 237 vs. \(2 (88) = 176\).

Time = 0.15 (sec) , antiderivative size = 237, normalized size of antiderivative = 2.28 \[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=-\frac {1}{4} \, d^{\frac {3}{2}} {\left (\frac {{\left (b c - 2 \, a d\right )} \arctan \left (\frac {{\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{{\left (a b c d - a^{2} d^{2}\right )}^{\frac {3}{2}}} + \frac {2 \, {\left ({\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b c - 2 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} a d - b c^{2}\right )}}{{\left ({\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} b - 2 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b c + 4 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} a d + b c^{2}\right )} {\left (a b c d - a^{2} d^{2}\right )}}\right )} \] Input:

integrate(x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")
 

Output:

-1/4*d^(3/2)*((b*c - 2*a*d)*arctan(1/2*((sqrt(d)*x^2 - sqrt(d*x^4 + c))^2* 
b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/(a*b*c*d - a^2*d^2)^(3/2) + 2*(( 
sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b*c - 2*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2 
*a*d - b*c^2)/(((sqrt(d)*x^2 - sqrt(d*x^4 + c))^4*b - 2*(sqrt(d)*x^2 - sqr 
t(d*x^4 + c))^2*b*c + 4*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*a*d + b*c^2)*(a* 
b*c*d - a^2*d^2)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x}{{\left (b\,x^4+a\right )}^2\,\sqrt {d\,x^4+c}} \,d x \] Input:

int(x/((a + b*x^4)^2*(c + d*x^4)^(1/2)),x)
 

Output:

int(x/((a + b*x^4)^2*(c + d*x^4)^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.40 (sec) , antiderivative size = 2444, normalized size of antiderivative = 23.50 \[ \int \frac {x}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx =\text {Too large to display} \] Input:

int(x/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)
 

Output:

(4*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log( - sqrt(2*sqrt(d)* 
sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d 
)*sqrt(b)*x**2)*a**2*d*x**2 - 2*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d 
- b*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt 
(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2)*a*b*c*x**2 + 4*sqrt(d)*sqrt(a 
)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d 
- b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2)*a 
*b*d*x**6 - 2*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log( - sqrt 
(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x** 
4) + sqrt(d)*sqrt(b)*x**2)*b**2*c*x**6 + 4*sqrt(d)*sqrt(a)*sqrt(c + d*x**4 
)*sqrt(a*d - b*c)*log(sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c 
) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2)*a**2*d*x**2 - 2*sqrt( 
d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log(sqrt(2*sqrt(d)*sqrt(a)*sqr 
t(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x 
**2)*a*b*c*x**2 + 4*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log(s 
qrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d* 
x**4) + sqrt(d)*sqrt(b)*x**2)*a*b*d*x**6 - 2*sqrt(d)*sqrt(a)*sqrt(c + d*x* 
*4)*sqrt(a*d - b*c)*log(sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b 
*c) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2)*b**2*c*x**6 - 4*sqr 
t(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log(2*sqrt(d)*sqrt(a)*sqr...