\(\int \frac {1}{x^3 (a+b x^4)^2 \sqrt {c+d x^4}} \, dx\) [262]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 149 \[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=-\frac {(3 b c-2 a d) \sqrt {c+d x^4}}{4 a^2 c (b c-a d) x^2}+\frac {b \sqrt {c+d x^4}}{4 a (b c-a d) x^2 \left (a+b x^4\right )}-\frac {b (3 b c-4 a d) \arctan \left (\frac {\sqrt {b c-a d} x^2}{\sqrt {a} \sqrt {c+d x^4}}\right )}{4 a^{5/2} (b c-a d)^{3/2}} \] Output:

-1/4*(-2*a*d+3*b*c)*(d*x^4+c)^(1/2)/a^2/c/(-a*d+b*c)/x^2+1/4*b*(d*x^4+c)^( 
1/2)/a/(-a*d+b*c)/x^2/(b*x^4+a)-1/4*b*(-4*a*d+3*b*c)*arctan((-a*d+b*c)^(1/ 
2)*x^2/a^(1/2)/(d*x^4+c)^(1/2))/a^(5/2)/(-a*d+b*c)^(3/2)
 

Mathematica [A] (verified)

Time = 1.08 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.05 \[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {\sqrt {c+d x^4} \left (2 a b c-2 a^2 d+3 b^2 c x^4-2 a b d x^4\right )}{4 a^2 c (-b c+a d) x^2 \left (a+b x^4\right )}-\frac {b (3 b c-4 a d) \arctan \left (\frac {a \sqrt {d}+b \sqrt {d} x^4+b x^2 \sqrt {c+d x^4}}{\sqrt {a} \sqrt {b c-a d}}\right )}{4 a^{5/2} (b c-a d)^{3/2}} \] Input:

Integrate[1/(x^3*(a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

(Sqrt[c + d*x^4]*(2*a*b*c - 2*a^2*d + 3*b^2*c*x^4 - 2*a*b*d*x^4))/(4*a^2*c 
*(-(b*c) + a*d)*x^2*(a + b*x^4)) - (b*(3*b*c - 4*a*d)*ArcTan[(a*Sqrt[d] + 
b*Sqrt[d]*x^4 + b*x^2*Sqrt[c + d*x^4])/(Sqrt[a]*Sqrt[b*c - a*d])])/(4*a^(5 
/2)*(b*c - a*d)^(3/2))
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {965, 374, 25, 445, 27, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 965

\(\displaystyle \frac {1}{2} \int \frac {1}{x^4 \left (b x^4+a\right )^2 \sqrt {d x^4+c}}dx^2\)

\(\Big \downarrow \) 374

\(\displaystyle \frac {1}{2} \left (\frac {b \sqrt {c+d x^4}}{2 a x^2 \left (a+b x^4\right ) (b c-a d)}-\frac {\int -\frac {2 b d x^4+3 b c-2 a d}{x^4 \left (b x^4+a\right ) \sqrt {d x^4+c}}dx^2}{2 a (b c-a d)}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{2} \left (\frac {\int \frac {2 b d x^4+3 b c-2 a d}{x^4 \left (b x^4+a\right ) \sqrt {d x^4+c}}dx^2}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^4}}{2 a x^2 \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {1}{2} \left (\frac {-\frac {\int \frac {b c (3 b c-4 a d)}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx^2}{a c}-\frac {\sqrt {c+d x^4} (3 b c-2 a d)}{a c x^2}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^4}}{2 a x^2 \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {-\frac {b (3 b c-4 a d) \int \frac {1}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx^2}{a}-\frac {\sqrt {c+d x^4} (3 b c-2 a d)}{a c x^2}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^4}}{2 a x^2 \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {1}{2} \left (\frac {-\frac {b (3 b c-4 a d) \int \frac {1}{a-(a d-b c) x^4}d\frac {x^2}{\sqrt {d x^4+c}}}{a}-\frac {\sqrt {c+d x^4} (3 b c-2 a d)}{a c x^2}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^4}}{2 a x^2 \left (a+b x^4\right ) (b c-a d)}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{2} \left (\frac {-\frac {b (3 b c-4 a d) \arctan \left (\frac {x^2 \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^4}}\right )}{a^{3/2} \sqrt {b c-a d}}-\frac {\sqrt {c+d x^4} (3 b c-2 a d)}{a c x^2}}{2 a (b c-a d)}+\frac {b \sqrt {c+d x^4}}{2 a x^2 \left (a+b x^4\right ) (b c-a d)}\right )\)

Input:

Int[1/(x^3*(a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

((b*Sqrt[c + d*x^4])/(2*a*(b*c - a*d)*x^2*(a + b*x^4)) + (-(((3*b*c - 2*a* 
d)*Sqrt[c + d*x^4])/(a*c*x^2)) - (b*(3*b*c - 4*a*d)*ArcTan[(Sqrt[b*c - a*d 
]*x^2)/(Sqrt[a]*Sqrt[c + d*x^4])])/(a^(3/2)*Sqrt[b*c - a*d]))/(2*a*(b*c - 
a*d)))/2
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 965
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), 
 x_Symbol] :> With[{k = GCD[m + 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 
 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /; Free 
Q[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]
 
Maple [A] (verified)

Time = 1.30 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.75

method result size
pseudoelliptic \(\frac {-\frac {\sqrt {d \,x^{4}+c}}{x^{2}}+\frac {b c \left (\frac {b \sqrt {d \,x^{4}+c}\, x^{2}}{b \,x^{4}+a}-\frac {\left (4 a d -3 c b \right ) \operatorname {arctanh}\left (\frac {a \sqrt {d \,x^{4}+c}}{x^{2} \sqrt {a \left (a d -c b \right )}}\right )}{\sqrt {a \left (a d -c b \right )}}\right )}{2 a d -2 c b}}{2 a^{2} c}\) \(112\)
risch \(-\frac {\sqrt {d \,x^{4}+c}}{2 a^{2} x^{2} c}+\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}-\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}+\frac {b \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a^{2} \left (a d -c b \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}+\frac {b \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a^{2} \left (a d -c b \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}\) \(885\)
elliptic \(-\frac {\sqrt {d \,x^{4}+c}}{2 a^{2} x^{2} c}+\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}-\frac {3 b \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -c b}{b}}}+\frac {b \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a^{2} \left (a d -c b \right ) \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}-\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}-\frac {\sqrt {-a b}}{b}\right )^{2} d +\frac {2 d \sqrt {-a b}\, \left (x^{2}-\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}-\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}+\frac {b \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{8 a^{2} \left (a d -c b \right ) \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}+\frac {d \sqrt {-a b}\, \ln \left (\frac {-\frac {2 \left (a d -c b \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -c b}{b}}\, \sqrt {\left (x^{2}+\frac {\sqrt {-a b}}{b}\right )^{2} d -\frac {2 d \sqrt {-a b}\, \left (x^{2}+\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -c b}{b}}}{x^{2}+\frac {\sqrt {-a b}}{b}}\right )}{8 a^{2} \left (a d -c b \right ) \sqrt {-\frac {a d -c b}{b}}}\) \(885\)
default \(\text {Expression too large to display}\) \(1221\)

Input:

int(1/x^3/(b*x^4+a)^2/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/a^2*(-(d*x^4+c)^(1/2)/x^2+1/2*b*c/(a*d-b*c)*(b*(d*x^4+c)^(1/2)*x^2/(b* 
x^4+a)-(4*a*d-3*b*c)/(a*(a*d-b*c))^(1/2)*arctanh(a*(d*x^4+c)^(1/2)/x^2/(a* 
(a*d-b*c))^(1/2))))/c
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 286 vs. \(2 (129) = 258\).

Time = 0.25 (sec) , antiderivative size = 612, normalized size of antiderivative = 4.11 \[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\left [-\frac {{\left ({\left (3 \, b^{3} c^{2} - 4 \, a b^{2} c d\right )} x^{6} + {\left (3 \, a b^{2} c^{2} - 4 \, a^{2} b c d\right )} x^{2}\right )} \sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{8} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{4} + a^{2} c^{2} + 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{6} - a c x^{2}\right )} \sqrt {d x^{4} + c} \sqrt {-a b c + a^{2} d}}{b^{2} x^{8} + 2 \, a b x^{4} + a^{2}}\right ) + 4 \, {\left (2 \, a^{2} b^{2} c^{2} - 4 \, a^{3} b c d + 2 \, a^{4} d^{2} + {\left (3 \, a b^{3} c^{2} - 5 \, a^{2} b^{2} c d + 2 \, a^{3} b d^{2}\right )} x^{4}\right )} \sqrt {d x^{4} + c}}{16 \, {\left ({\left (a^{3} b^{3} c^{3} - 2 \, a^{4} b^{2} c^{2} d + a^{5} b c d^{2}\right )} x^{6} + {\left (a^{4} b^{2} c^{3} - 2 \, a^{5} b c^{2} d + a^{6} c d^{2}\right )} x^{2}\right )}}, -\frac {{\left ({\left (3 \, b^{3} c^{2} - 4 \, a b^{2} c d\right )} x^{6} + {\left (3 \, a b^{2} c^{2} - 4 \, a^{2} b c d\right )} x^{2}\right )} \sqrt {a b c - a^{2} d} \arctan \left (\frac {{\left ({\left (b c - 2 \, a d\right )} x^{4} - a c\right )} \sqrt {d x^{4} + c} \sqrt {a b c - a^{2} d}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{6} + {\left (a b c^{2} - a^{2} c d\right )} x^{2}\right )}}\right ) + 2 \, {\left (2 \, a^{2} b^{2} c^{2} - 4 \, a^{3} b c d + 2 \, a^{4} d^{2} + {\left (3 \, a b^{3} c^{2} - 5 \, a^{2} b^{2} c d + 2 \, a^{3} b d^{2}\right )} x^{4}\right )} \sqrt {d x^{4} + c}}{8 \, {\left ({\left (a^{3} b^{3} c^{3} - 2 \, a^{4} b^{2} c^{2} d + a^{5} b c d^{2}\right )} x^{6} + {\left (a^{4} b^{2} c^{3} - 2 \, a^{5} b c^{2} d + a^{6} c d^{2}\right )} x^{2}\right )}}\right ] \] Input:

integrate(1/x^3/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")
 

Output:

[-1/16*(((3*b^3*c^2 - 4*a*b^2*c*d)*x^6 + (3*a*b^2*c^2 - 4*a^2*b*c*d)*x^2)* 
sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^8 - 2*(3*a*b 
*c^2 - 4*a^2*c*d)*x^4 + a^2*c^2 + 4*((b*c - 2*a*d)*x^6 - a*c*x^2)*sqrt(d*x 
^4 + c)*sqrt(-a*b*c + a^2*d))/(b^2*x^8 + 2*a*b*x^4 + a^2)) + 4*(2*a^2*b^2* 
c^2 - 4*a^3*b*c*d + 2*a^4*d^2 + (3*a*b^3*c^2 - 5*a^2*b^2*c*d + 2*a^3*b*d^2 
)*x^4)*sqrt(d*x^4 + c))/((a^3*b^3*c^3 - 2*a^4*b^2*c^2*d + a^5*b*c*d^2)*x^6 
 + (a^4*b^2*c^3 - 2*a^5*b*c^2*d + a^6*c*d^2)*x^2), -1/8*(((3*b^3*c^2 - 4*a 
*b^2*c*d)*x^6 + (3*a*b^2*c^2 - 4*a^2*b*c*d)*x^2)*sqrt(a*b*c - a^2*d)*arcta 
n(1/2*((b*c - 2*a*d)*x^4 - a*c)*sqrt(d*x^4 + c)*sqrt(a*b*c - a^2*d)/((a*b* 
c*d - a^2*d^2)*x^6 + (a*b*c^2 - a^2*c*d)*x^2)) + 2*(2*a^2*b^2*c^2 - 4*a^3* 
b*c*d + 2*a^4*d^2 + (3*a*b^3*c^2 - 5*a^2*b^2*c*d + 2*a^3*b*d^2)*x^4)*sqrt( 
d*x^4 + c))/((a^3*b^3*c^3 - 2*a^4*b^2*c^2*d + a^5*b*c*d^2)*x^6 + (a^4*b^2* 
c^3 - 2*a^5*b*c^2*d + a^6*c*d^2)*x^2)]
 

Sympy [F]

\[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {1}{x^{3} \left (a + b x^{4}\right )^{2} \sqrt {c + d x^{4}}}\, dx \] Input:

integrate(1/x**3/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)
 

Output:

Integral(1/(x**3*(a + b*x**4)**2*sqrt(c + d*x**4)), x)
 

Maxima [F]

\[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {1}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c} x^{3}} \,d x } \] Input:

integrate(1/x^3/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(1/((b*x^4 + a)^2*sqrt(d*x^4 + c)*x^3), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 418 vs. \(2 (129) = 258\).

Time = 0.38 (sec) , antiderivative size = 418, normalized size of antiderivative = 2.81 \[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {1}{4} \, d^{\frac {5}{2}} {\left (\frac {{\left (3 \, b^{2} c - 4 \, a b d\right )} \arctan \left (\frac {{\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{{\left (a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt {a b c d - a^{2} d^{2}}} + \frac {2 \, {\left (3 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} b^{2} c - 4 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} a b d - 6 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b^{2} c^{2} + 14 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} a b c d - 8 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} a^{2} d^{2} + 3 \, b^{2} c^{3} - 2 \, a b c^{2} d\right )}}{{\left ({\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{6} b - 3 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} b c + 4 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{4} a d + 3 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} b c^{2} - 4 \, {\left (\sqrt {d} x^{2} - \sqrt {d x^{4} + c}\right )}^{2} a c d - b c^{3}\right )} {\left (a^{2} b c d^{2} - a^{3} d^{3}\right )}}\right )} \] Input:

integrate(1/x^3/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")
 

Output:

1/4*d^(5/2)*((3*b^2*c - 4*a*b*d)*arctan(1/2*((sqrt(d)*x^2 - sqrt(d*x^4 + c 
))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/((a^2*b*c*d^2 - a^3*d^3)*sq 
rt(a*b*c*d - a^2*d^2)) + 2*(3*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^4*b^2*c - 4* 
(sqrt(d)*x^2 - sqrt(d*x^4 + c))^4*a*b*d - 6*(sqrt(d)*x^2 - sqrt(d*x^4 + c) 
)^2*b^2*c^2 + 14*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*a*b*c*d - 8*(sqrt(d)*x^ 
2 - sqrt(d*x^4 + c))^2*a^2*d^2 + 3*b^2*c^3 - 2*a*b*c^2*d)/(((sqrt(d)*x^2 - 
 sqrt(d*x^4 + c))^6*b - 3*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^4*b*c + 4*(sqrt( 
d)*x^2 - sqrt(d*x^4 + c))^4*a*d + 3*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*b*c^ 
2 - 4*(sqrt(d)*x^2 - sqrt(d*x^4 + c))^2*a*c*d - b*c^3)*(a^2*b*c*d^2 - a^3* 
d^3)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {1}{x^3\,{\left (b\,x^4+a\right )}^2\,\sqrt {d\,x^4+c}} \,d x \] Input:

int(1/(x^3*(a + b*x^4)^2*(c + d*x^4)^(1/2)),x)
 

Output:

int(1/(x^3*(a + b*x^4)^2*(c + d*x^4)^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.49 (sec) , antiderivative size = 3526, normalized size of antiderivative = 23.66 \[ \int \frac {1}{x^3 \left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx =\text {Too large to display} \] Input:

int(1/x^3/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)
 

Output:

( - 4*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log( - sqrt(2*sqrt( 
d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x**4) + sqr 
t(d)*sqrt(b)*x**2)*a**2*b*c*d*x**2 - 16*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*s 
qrt(a*d - b*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c 
) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2)*a**2*b*d**2*x**6 + 3* 
sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log( - sqrt(2*sqrt(d)*sqr 
t(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*s 
qrt(b)*x**2)*a*b**2*c**2*x**2 + 8*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a* 
d - b*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sq 
rt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2)*a*b**2*c*d*x**6 - 16*sqrt(d 
)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*s 
qrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b) 
*x**2)*a*b**2*d**2*x**10 + 3*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b 
*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b) 
*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2)*b**3*c**2*x**6 + 12*sqrt(d)*sqrt 
(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log( - sqrt(2*sqrt(d)*sqrt(a)*sqrt(a* 
d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d*x**4) + sqrt(d)*sqrt(b)*x**2) 
*b**3*c*d*x**10 - 4*sqrt(d)*sqrt(a)*sqrt(c + d*x**4)*sqrt(a*d - b*c)*log(s 
qrt(2*sqrt(d)*sqrt(a)*sqrt(a*d - b*c) - 2*a*d + b*c) + sqrt(b)*sqrt(c + d* 
x**4) + sqrt(d)*sqrt(b)*x**2)*a**2*b*c*d*x**2 - 16*sqrt(d)*sqrt(a)*sqrt...