\(\int \frac {x^6}{(a+b x^4)^2 \sqrt {c+d x^4}} \, dx\) [271]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 1159 \[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx =\text {Too large to display} \] Output:

1/4*d^(1/2)*x*(d*x^4+c)^(1/2)/b/(-a*d+b*c)/(c^(1/2)+d^(1/2)*x^2)-1/4*x^3*( 
d*x^4+c)^(1/2)/(-a*d+b*c)/(b*x^4+a)+1/16*(-a*d+3*b*c)*arctan((-a*d+b*c)^(1 
/2)*x/(-a)^(1/4)/b^(1/4)/(d*x^4+c)^(1/2))/(-a)^(1/4)/b^(5/4)/(-a*d+b*c)^(3 
/2)-1/16*(-a*d+3*b*c)*arctanh((-a*d+b*c)^(1/2)*x/(-a)^(1/4)/b^(1/4)/(d*x^4 
+c)^(1/2))/(-a)^(1/4)/b^(5/4)/(-a*d+b*c)^(3/2)-1/4*c^(1/4)*d^(1/4)*(c^(1/2 
)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*a 
rctan(d^(1/4)*x/c^(1/4))),1/2*2^(1/2))/b/(-a*d+b*c)/(d*x^4+c)^(1/2)+1/8*c^ 
(1/4)*d^(1/4)*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1 
/2)*InverseJacobiAM(2*arctan(d^(1/4)*x/c^(1/4)),1/2*2^(1/2))/b/(-a*d+b*c)/ 
(d*x^4+c)^(1/2)-1/16*d^(1/4)*(-a*d+3*b*c)*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c) 
/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(d^(1/4)*x/c^(1/4) 
),1/2*2^(1/2))/b^(3/2)/c^(1/4)/(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2))/(-a*d+ 
b*c)/(d*x^4+c)^(1/2)-1/16*d^(1/4)*(-a*d+3*b*c)*(c^(1/2)+d^(1/2)*x^2)*((d*x 
^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(d^(1/4)*x/c^ 
(1/4)),1/2*2^(1/2))/b^(3/2)/c^(1/4)/(b^(1/2)*c^(1/2)+(-a)^(1/2)*d^(1/2))/( 
-a*d+b*c)/(d*x^4+c)^(1/2)+1/32*(b^(1/2)*c^(1/2)+(-a)^(1/2)*d^(1/2))*(-a*d+ 
3*b*c)*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*Ell 
ipticPi(sin(2*arctan(d^(1/4)*x/c^(1/4))),-1/4*(b^(1/2)*c^(1/2)-(-a)^(1/2)* 
d^(1/2))^2/(-a)^(1/2)/b^(1/2)/c^(1/2)/d^(1/2),1/2*2^(1/2))/b^(3/2)/c^(1/4) 
/((-a)^(1/2)*b^(1/2)*c^(1/2)+a*d^(1/2))/d^(1/4)/(-a*d+b*c)/(d*x^4+c)^(1...
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.09 (sec) , antiderivative size = 162, normalized size of antiderivative = 0.14 \[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {-7 a x^3 \left (c+d x^4\right )+7 c x^3 \left (a+b x^4\right ) \sqrt {1+\frac {d x^4}{c}} \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )+d x^7 \left (a+b x^4\right ) \sqrt {1+\frac {d x^4}{c}} \operatorname {AppellF1}\left (\frac {7}{4},\frac {1}{2},1,\frac {11}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{28 a (b c-a d) \left (a+b x^4\right ) \sqrt {c+d x^4}} \] Input:

Integrate[x^6/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

(-7*a*x^3*(c + d*x^4) + 7*c*x^3*(a + b*x^4)*Sqrt[1 + (d*x^4)/c]*AppellF1[3 
/4, 1/2, 1, 7/4, -((d*x^4)/c), -((b*x^4)/a)] + d*x^7*(a + b*x^4)*Sqrt[1 + 
(d*x^4)/c]*AppellF1[7/4, 1/2, 1, 11/4, -((d*x^4)/c), -((b*x^4)/a)])/(28*a* 
(b*c - a*d)*(a + b*x^4)*Sqrt[c + d*x^4])
 

Rubi [A] (verified)

Time = 2.47 (sec) , antiderivative size = 1085, normalized size of antiderivative = 0.94, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {971, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 971

\(\displaystyle \frac {\int \frac {x^2 \left (d x^4+3 c\right )}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{4 (b c-a d)}-\frac {x^3 \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {\int \left (\frac {d x^2}{b \sqrt {d x^4+c}}+\frac {(3 b c-a d) x^2}{b \left (b x^4+a\right ) \sqrt {d x^4+c}}\right )dx}{4 (b c-a d)}-\frac {x^3 \sqrt {c+d x^4}}{4 \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {-\frac {(3 b c-a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right ) \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{8 \sqrt {-a} b^{3/2} \sqrt [4]{c} \sqrt [4]{d} (b c+a d) \sqrt {d x^4+c}}+\frac {(3 b c-a d) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{4 \sqrt [4]{-a} b^{5/4} \sqrt {b c-a d}}-\frac {(3 b c-a d) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{4 \sqrt [4]{-a} b^{5/4} \sqrt {b c-a d}}-\frac {\sqrt [4]{c} \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac {1}{2}\right )}{b \sqrt {d x^4+c}}+\frac {\sqrt [4]{c} \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 b \sqrt {d x^4+c}}-\frac {\left (\sqrt {c}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \sqrt [4]{d} (3 b c-a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 b \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}-\frac {\left (\sqrt {c}+\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \sqrt [4]{d} (3 b c-a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 b \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2 (3 b c-a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\sqrt {c} \left (\sqrt {b}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {c}}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{8 \sqrt {-a} b^{3/2} \sqrt [4]{c} \sqrt [4]{d} (b c+a d) \sqrt {d x^4+c}}+\frac {\sqrt {d} x \sqrt {d x^4+c}}{b \left (\sqrt {d} x^2+\sqrt {c}\right )}}{4 (b c-a d)}-\frac {x^3 \sqrt {d x^4+c}}{4 (b c-a d) \left (b x^4+a\right )}\)

Input:

Int[x^6/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

-1/4*(x^3*Sqrt[c + d*x^4])/((b*c - a*d)*(a + b*x^4)) + ((Sqrt[d]*x*Sqrt[c 
+ d*x^4])/(b*(Sqrt[c] + Sqrt[d]*x^2)) + ((3*b*c - a*d)*ArcTan[(Sqrt[b*c - 
a*d]*x)/((-a)^(1/4)*b^(1/4)*Sqrt[c + d*x^4])])/(4*(-a)^(1/4)*b^(5/4)*Sqrt[ 
b*c - a*d]) - ((3*b*c - a*d)*ArcTanh[(Sqrt[b*c - a*d]*x)/((-a)^(1/4)*b^(1/ 
4)*Sqrt[c + d*x^4])])/(4*(-a)^(1/4)*b^(5/4)*Sqrt[b*c - a*d]) - (c^(1/4)*d^ 
(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]* 
EllipticE[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(b*Sqrt[c + d*x^4]) + (c^(1 
/4)*d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^ 
2)^2]*EllipticF[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(2*b*Sqrt[c + d*x^4]) 
 - ((Sqrt[c] - (Sqrt[-a]*Sqrt[d])/Sqrt[b])*d^(1/4)*(3*b*c - a*d)*(Sqrt[c] 
+ Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*Arc 
Tan[(d^(1/4)*x)/c^(1/4)], 1/2])/(4*b*c^(1/4)*(b*c + a*d)*Sqrt[c + d*x^4]) 
- ((Sqrt[c] + (Sqrt[-a]*Sqrt[d])/Sqrt[b])*d^(1/4)*(3*b*c - a*d)*(Sqrt[c] + 
 Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcT 
an[(d^(1/4)*x)/c^(1/4)], 1/2])/(4*b*c^(1/4)*(b*c + a*d)*Sqrt[c + d*x^4]) - 
 ((Sqrt[b]*Sqrt[c] - Sqrt[-a]*Sqrt[d])^2*(3*b*c - a*d)*(Sqrt[c] + Sqrt[d]* 
x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[ 
c] + Sqrt[-a]*Sqrt[d])^2/(4*Sqrt[-a]*Sqrt[b]*Sqrt[c]*Sqrt[d]), 2*ArcTan[(d 
^(1/4)*x)/c^(1/4)], 1/2])/(8*Sqrt[-a]*b^(3/2)*c^(1/4)*d^(1/4)*(b*c + a*d)* 
Sqrt[c + d*x^4]) + ((Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])^2*(3*b*c - a*d...
 

Defintions of rubi rules used

rule 971
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)* 
((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Simp[e^n/(n*(b*c - a*d) 
*(p + 1))   Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - 
 n + 1) + d*(m + n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e 
, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n, m - n + 
 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 4.58 (sec) , antiderivative size = 353, normalized size of antiderivative = 0.30

method result size
elliptic \(\frac {x^{3} \sqrt {d \,x^{4}+c}}{4 \left (a d -c b \right ) \left (b \,x^{4}+a \right )}-\frac {i \sqrt {d}\, \sqrt {c}\, \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )\right )}{4 \left (a d -c b \right ) b \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-a d +3 c b \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\left (a d -c b \right ) \underline {\hspace {1.25 ex}}\alpha }}{32 b^{2}}\) \(353\)
default \(\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}}{\underline {\hspace {1.25 ex}}\alpha }}{8 b^{2}}-\frac {a \left (-\frac {b \,x^{3} \sqrt {d \,x^{4}+c}}{4 a \left (a d -c b \right ) \left (b \,x^{4}+a \right )}+\frac {i \sqrt {d}\, \sqrt {c}\, \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )\right )}{4 \left (a d -c b \right ) a \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-3 a d +c b \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\left (a d -c b \right ) \underline {\hspace {1.25 ex}}\alpha }}{32 b a}\right )}{b}\) \(556\)

Input:

int(x^6/(b*x^4+a)^2/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/(a*d-b*c)*x^3*(d*x^4+c)^(1/2)/(b*x^4+a)-1/4*I*d^(1/2)/(a*d-b*c)/b*c^(1 
/2)/(I/c^(1/2)*d^(1/2))^(1/2)*(1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2) 
*d^(1/2)*x^2)^(1/2)/(d*x^4+c)^(1/2)*(EllipticF(x*(I/c^(1/2)*d^(1/2))^(1/2) 
,I)-EllipticE(x*(I/c^(1/2)*d^(1/2))^(1/2),I))-1/32/b^2*sum((-a*d+3*b*c)/(a 
*d-b*c)/_alpha*(-1/((-a*d+b*c)/b)^(1/2)*arctanh(1/2*(2*_alpha^2*d*x^2+2*c) 
/((-a*d+b*c)/b)^(1/2)/(d*x^4+c)^(1/2))+2/(I/c^(1/2)*d^(1/2))^(1/2)*_alpha^ 
3*b/a*(1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2)^(1/2)/(d*x 
^4+c)^(1/2)*EllipticPi(x*(I/c^(1/2)*d^(1/2))^(1/2),I*c^(1/2)/d^(1/2)*_alph 
a^2/a*b,(-I/c^(1/2)*d^(1/2))^(1/2)/(I/c^(1/2)*d^(1/2))^(1/2))),_alpha=Root 
Of(_Z^4*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\text {Timed out} \] Input:

integrate(x^6/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^{6}}{\left (a + b x^{4}\right )^{2} \sqrt {c + d x^{4}}}\, dx \] Input:

integrate(x**6/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)
 

Output:

Integral(x**6/((a + b*x**4)**2*sqrt(c + d*x**4)), x)
 

Maxima [F]

\[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x^{6}}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^6/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^6/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 

Giac [F]

\[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x^{6}}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^6/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^6/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^6}{{\left (b\,x^4+a\right )}^2\,\sqrt {d\,x^4+c}} \,d x \] Input:

int(x^6/((a + b*x^4)^2*(c + d*x^4)^(1/2)),x)
 

Output:

int(x^6/((a + b*x^4)^2*(c + d*x^4)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x^6}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {\sqrt {d \,x^{4}+c}\, x^{6}}{b^{2} d \,x^{12}+2 a b d \,x^{8}+b^{2} c \,x^{8}+a^{2} d \,x^{4}+2 a b c \,x^{4}+a^{2} c}d x \] Input:

int(x^6/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)
 

Output:

int((sqrt(c + d*x**4)*x**6)/(a**2*c + a**2*d*x**4 + 2*a*b*c*x**4 + 2*a*b*d 
*x**8 + b**2*c*x**8 + b**2*d*x**12),x)