\(\int \frac {x^2}{(a+b x^4)^2 \sqrt {c+d x^4}} \, dx\) [272]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 1169 \[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx =\text {Too large to display} \] Output:

-1/4*d^(1/2)*x*(d*x^4+c)^(1/2)/a/(-a*d+b*c)/(c^(1/2)+d^(1/2)*x^2)+1/4*b*x^ 
3*(d*x^4+c)^(1/2)/a/(-a*d+b*c)/(b*x^4+a)-1/16*(-3*a*d+b*c)*arctan((-a*d+b* 
c)^(1/2)*x/(-a)^(1/4)/b^(1/4)/(d*x^4+c)^(1/2))/(-a)^(5/4)/b^(1/4)/(-a*d+b* 
c)^(3/2)+1/16*(-3*a*d+b*c)*arctanh((-a*d+b*c)^(1/2)*x/(-a)^(1/4)/b^(1/4)/( 
d*x^4+c)^(1/2))/(-a)^(5/4)/b^(1/4)/(-a*d+b*c)^(3/2)+1/4*c^(1/4)*d^(1/4)*(c 
^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*EllipticE(si 
n(2*arctan(d^(1/4)*x/c^(1/4))),1/2*2^(1/2))/a/(-a*d+b*c)/(d*x^4+c)^(1/2)-1 
/8*c^(1/4)*d^(1/4)*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^ 
2)^(1/2)*InverseJacobiAM(2*arctan(d^(1/4)*x/c^(1/4)),1/2*2^(1/2))/a/(-a*d+ 
b*c)/(d*x^4+c)^(1/2)-1/16*d^(1/4)*(-3*a*d+b*c)*(c^(1/2)+d^(1/2)*x^2)*((d*x 
^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(d^(1/4)*x/c^ 
(1/4)),1/2*2^(1/2))/a/b^(1/2)/c^(1/4)/(b^(1/2)*c^(1/2)-(-a)^(1/2)*d^(1/2)) 
/(-a*d+b*c)/(d*x^4+c)^(1/2)-1/16*d^(1/4)*(-3*a*d+b*c)*(c^(1/2)+d^(1/2)*x^2 
)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(d^(1/ 
4)*x/c^(1/4)),1/2*2^(1/2))/a/b^(1/2)/c^(1/4)/(b^(1/2)*c^(1/2)+(-a)^(1/2)*d 
^(1/2))/(-a*d+b*c)/(d*x^4+c)^(1/2)+1/32*(b^(1/2)*c^(1/2)+(-a)^(1/2)*d^(1/2 
))*(-3*a*d+b*c)*(c^(1/2)+d^(1/2)*x^2)*((d*x^4+c)/(c^(1/2)+d^(1/2)*x^2)^2)^ 
(1/2)*EllipticPi(sin(2*arctan(d^(1/4)*x/c^(1/4))),-1/4*(b^(1/2)*c^(1/2)-(- 
a)^(1/2)*d^(1/2))^2/(-a)^(1/2)/b^(1/2)/c^(1/2)/d^(1/2),1/2*2^(1/2))/a/b^(1 
/2)/c^(1/4)/((-a)^(1/2)*b^(1/2)*c^(1/2)+a*d^(1/2))/d^(1/4)/(-a*d+b*c)/(...
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.13 (sec) , antiderivative size = 172, normalized size of antiderivative = 0.15 \[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\frac {21 a b x^3 \left (c+d x^4\right )+7 (b c-4 a d) x^3 \left (a+b x^4\right ) \sqrt {1+\frac {d x^4}{c}} \operatorname {AppellF1}\left (\frac {3}{4},\frac {1}{2},1,\frac {7}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )-3 b d x^7 \left (a+b x^4\right ) \sqrt {1+\frac {d x^4}{c}} \operatorname {AppellF1}\left (\frac {7}{4},\frac {1}{2},1,\frac {11}{4},-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{84 a^2 (b c-a d) \left (a+b x^4\right ) \sqrt {c+d x^4}} \] Input:

Integrate[x^2/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

(21*a*b*x^3*(c + d*x^4) + 7*(b*c - 4*a*d)*x^3*(a + b*x^4)*Sqrt[1 + (d*x^4) 
/c]*AppellF1[3/4, 1/2, 1, 7/4, -((d*x^4)/c), -((b*x^4)/a)] - 3*b*d*x^7*(a 
+ b*x^4)*Sqrt[1 + (d*x^4)/c]*AppellF1[7/4, 1/2, 1, 11/4, -((d*x^4)/c), -(( 
b*x^4)/a)])/(84*a^2*(b*c - a*d)*(a + b*x^4)*Sqrt[c + d*x^4])
 

Rubi [A] (verified)

Time = 2.16 (sec) , antiderivative size = 1071, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {972, 25, 1054, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx\)

\(\Big \downarrow \) 972

\(\displaystyle \frac {b x^3 \sqrt {c+d x^4}}{4 a \left (a+b x^4\right ) (b c-a d)}-\frac {\int -\frac {x^2 \left (-b d x^4+b c-4 a d\right )}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{4 a (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {x^2 \left (-b d x^4+b c-4 a d\right )}{\left (b x^4+a\right ) \sqrt {d x^4+c}}dx}{4 a (b c-a d)}+\frac {b x^3 \sqrt {c+d x^4}}{4 a \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 1054

\(\displaystyle \frac {\int \left (\frac {(b c-3 a d) x^2}{\left (b x^4+a\right ) \sqrt {d x^4+c}}-\frac {d x^2}{\sqrt {d x^4+c}}\right )dx}{4 a (b c-a d)}+\frac {b x^3 \sqrt {c+d x^4}}{4 a \left (a+b x^4\right ) (b c-a d)}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {b \sqrt {d x^4+c} x^3}{4 a (b c-a d) \left (b x^4+a\right )}+\frac {-\frac {(b c-3 a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {c} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right ) \left (\sqrt {b} \sqrt {c}-\sqrt {-a} \sqrt {d}\right )^2}{8 \sqrt {-a} \sqrt {b} \sqrt [4]{c} \sqrt [4]{d} (b c+a d) \sqrt {d x^4+c}}+\frac {(b c-3 a d) \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{4 \sqrt [4]{-a} \sqrt [4]{b} \sqrt {b c-a d}}-\frac {(b c-3 a d) \text {arctanh}\left (\frac {\sqrt {b c-a d} x}{\sqrt [4]{-a} \sqrt [4]{b} \sqrt {d x^4+c}}\right )}{4 \sqrt [4]{-a} \sqrt [4]{b} \sqrt {b c-a d}}+\frac {\sqrt [4]{c} \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right )|\frac {1}{2}\right )}{\sqrt {d x^4+c}}-\frac {\sqrt [4]{c} \sqrt [4]{d} \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{2 \sqrt {d x^4+c}}-\frac {\left (\sqrt {c}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \sqrt [4]{d} (b c-3 a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}-\frac {\left (\sqrt {c}+\frac {\sqrt {-a} \sqrt {d}}{\sqrt {b}}\right ) \sqrt [4]{d} (b c-3 a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{4 \sqrt [4]{c} (b c+a d) \sqrt {d x^4+c}}+\frac {\left (\sqrt {b} \sqrt {c}+\sqrt {-a} \sqrt {d}\right )^2 (b c-3 a d) \left (\sqrt {d} x^2+\sqrt {c}\right ) \sqrt {\frac {d x^4+c}{\left (\sqrt {d} x^2+\sqrt {c}\right )^2}} \operatorname {EllipticPi}\left (-\frac {\sqrt {c} \left (\sqrt {b}-\frac {\sqrt {-a} \sqrt {d}}{\sqrt {c}}\right )^2}{4 \sqrt {-a} \sqrt {b} \sqrt {d}},2 \arctan \left (\frac {\sqrt [4]{d} x}{\sqrt [4]{c}}\right ),\frac {1}{2}\right )}{8 \sqrt {-a} \sqrt {b} \sqrt [4]{c} \sqrt [4]{d} (b c+a d) \sqrt {d x^4+c}}-\frac {\sqrt {d} x \sqrt {d x^4+c}}{\sqrt {d} x^2+\sqrt {c}}}{4 a (b c-a d)}\)

Input:

Int[x^2/((a + b*x^4)^2*Sqrt[c + d*x^4]),x]
 

Output:

(b*x^3*Sqrt[c + d*x^4])/(4*a*(b*c - a*d)*(a + b*x^4)) + (-((Sqrt[d]*x*Sqrt 
[c + d*x^4])/(Sqrt[c] + Sqrt[d]*x^2)) + ((b*c - 3*a*d)*ArcTan[(Sqrt[b*c - 
a*d]*x)/((-a)^(1/4)*b^(1/4)*Sqrt[c + d*x^4])])/(4*(-a)^(1/4)*b^(1/4)*Sqrt[ 
b*c - a*d]) - ((b*c - 3*a*d)*ArcTanh[(Sqrt[b*c - a*d]*x)/((-a)^(1/4)*b^(1/ 
4)*Sqrt[c + d*x^4])])/(4*(-a)^(1/4)*b^(1/4)*Sqrt[b*c - a*d]) + (c^(1/4)*d^ 
(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]* 
EllipticE[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/Sqrt[c + d*x^4] - (c^(1/4)* 
d^(1/4)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2 
]*EllipticF[2*ArcTan[(d^(1/4)*x)/c^(1/4)], 1/2])/(2*Sqrt[c + d*x^4]) - ((S 
qrt[c] - (Sqrt[-a]*Sqrt[d])/Sqrt[b])*d^(1/4)*(b*c - 3*a*d)*(Sqrt[c] + Sqrt 
[d]*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d 
^(1/4)*x)/c^(1/4)], 1/2])/(4*c^(1/4)*(b*c + a*d)*Sqrt[c + d*x^4]) - ((Sqrt 
[c] + (Sqrt[-a]*Sqrt[d])/Sqrt[b])*d^(1/4)*(b*c - 3*a*d)*(Sqrt[c] + Sqrt[d] 
*x^2)*Sqrt[(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticF[2*ArcTan[(d^(1 
/4)*x)/c^(1/4)], 1/2])/(4*c^(1/4)*(b*c + a*d)*Sqrt[c + d*x^4]) - ((Sqrt[b] 
*Sqrt[c] - Sqrt[-a]*Sqrt[d])^2*(b*c - 3*a*d)*(Sqrt[c] + Sqrt[d]*x^2)*Sqrt[ 
(c + d*x^4)/(Sqrt[c] + Sqrt[d]*x^2)^2]*EllipticPi[(Sqrt[b]*Sqrt[c] + Sqrt[ 
-a]*Sqrt[d])^2/(4*Sqrt[-a]*Sqrt[b]*Sqrt[c]*Sqrt[d]), 2*ArcTan[(d^(1/4)*x)/ 
c^(1/4)], 1/2])/(8*Sqrt[-a]*Sqrt[b]*c^(1/4)*d^(1/4)*(b*c + a*d)*Sqrt[c + d 
*x^4]) + ((Sqrt[b]*Sqrt[c] + Sqrt[-a]*Sqrt[d])^2*(b*c - 3*a*d)*(Sqrt[c]...
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 972
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x 
^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a*d)*(p + 
 1))   Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*( 
b*c - a*d)*(p + 1) + d*b*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{ 
a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] & 
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
 

rule 1054
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n 
_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a 
+ b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m, p}, x] && IGtQ[n, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.14 (sec) , antiderivative size = 359, normalized size of antiderivative = 0.31

method result size
default \(-\frac {b \,x^{3} \sqrt {d \,x^{4}+c}}{4 a \left (a d -c b \right ) \left (b \,x^{4}+a \right )}+\frac {i \sqrt {d}\, \sqrt {c}\, \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )\right )}{4 \left (a d -c b \right ) a \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-3 a d +c b \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\left (a d -c b \right ) \underline {\hspace {1.25 ex}}\alpha }}{32 b a}\) \(359\)
elliptic \(-\frac {b \,x^{3} \sqrt {d \,x^{4}+c}}{4 a \left (a d -c b \right ) \left (b \,x^{4}+a \right )}+\frac {i \sqrt {d}\, \sqrt {c}\, \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \left (\operatorname {EllipticF}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )-\operatorname {EllipticE}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, i\right )\right )}{4 \left (a d -c b \right ) a \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, \sqrt {d \,x^{4}+c}}-\frac {\munderset {\underline {\hspace {1.25 ex}}\alpha =\operatorname {RootOf}\left (\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-3 a d +c b \right ) \left (-\frac {\operatorname {arctanh}\left (\frac {2 d \,x^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+2 c}{2 \sqrt {\frac {-a d +c b}{b}}\, \sqrt {d \,x^{4}+c}}\right )}{\sqrt {\frac {-a d +c b}{b}}}+\frac {2 \underline {\hspace {1.25 ex}}\alpha ^{3} b \sqrt {1-\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \sqrt {1+\frac {i \sqrt {d}\, x^{2}}{\sqrt {c}}}\, \operatorname {EllipticPi}\left (x \sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}, \frac {i \sqrt {c}\, \underline {\hspace {1.25 ex}}\alpha ^{2} b}{\sqrt {d}\, a}, \frac {\sqrt {-\frac {i \sqrt {d}}{\sqrt {c}}}}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}}\right )}{\sqrt {\frac {i \sqrt {d}}{\sqrt {c}}}\, a \sqrt {d \,x^{4}+c}}\right )}{\left (a d -c b \right ) \underline {\hspace {1.25 ex}}\alpha }}{32 b a}\) \(359\)

Input:

int(x^2/(b*x^4+a)^2/(d*x^4+c)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/4*b/a/(a*d-b*c)*x^3*(d*x^4+c)^(1/2)/(b*x^4+a)+1/4*I*d^(1/2)/(a*d-b*c)/a 
*c^(1/2)/(I/c^(1/2)*d^(1/2))^(1/2)*(1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^ 
(1/2)*d^(1/2)*x^2)^(1/2)/(d*x^4+c)^(1/2)*(EllipticF(x*(I/c^(1/2)*d^(1/2))^ 
(1/2),I)-EllipticE(x*(I/c^(1/2)*d^(1/2))^(1/2),I))-1/32/b/a*sum((-3*a*d+b* 
c)/(a*d-b*c)/_alpha*(-1/((-a*d+b*c)/b)^(1/2)*arctanh(1/2*(2*_alpha^2*d*x^2 
+2*c)/((-a*d+b*c)/b)^(1/2)/(d*x^4+c)^(1/2))+2/(I/c^(1/2)*d^(1/2))^(1/2)*_a 
lpha^3*b/a*(1-I/c^(1/2)*d^(1/2)*x^2)^(1/2)*(1+I/c^(1/2)*d^(1/2)*x^2)^(1/2) 
/(d*x^4+c)^(1/2)*EllipticPi(x*(I/c^(1/2)*d^(1/2))^(1/2),I*c^(1/2)/d^(1/2)* 
_alpha^2/a*b,(-I/c^(1/2)*d^(1/2))^(1/2)/(I/c^(1/2)*d^(1/2))^(1/2))),_alpha 
=RootOf(_Z^4*b+a))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\text {Timed out} \] Input:

integrate(x^2/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^{2}}{\left (a + b x^{4}\right )^{2} \sqrt {c + d x^{4}}}\, dx \] Input:

integrate(x**2/(b*x**4+a)**2/(d*x**4+c)**(1/2),x)
 

Output:

Integral(x**2/((a + b*x**4)**2*sqrt(c + d*x**4)), x)
 

Maxima [F]

\[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x^{2}}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^2/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^2/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 

Giac [F]

\[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int { \frac {x^{2}}{{\left (b x^{4} + a\right )}^{2} \sqrt {d x^{4} + c}} \,d x } \] Input:

integrate(x^2/(b*x^4+a)^2/(d*x^4+c)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^2/((b*x^4 + a)^2*sqrt(d*x^4 + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {x^2}{{\left (b\,x^4+a\right )}^2\,\sqrt {d\,x^4+c}} \,d x \] Input:

int(x^2/((a + b*x^4)^2*(c + d*x^4)^(1/2)),x)
 

Output:

int(x^2/((a + b*x^4)^2*(c + d*x^4)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {x^2}{\left (a+b x^4\right )^2 \sqrt {c+d x^4}} \, dx=\int \frac {\sqrt {d \,x^{4}+c}\, x^{2}}{b^{2} d \,x^{12}+2 a b d \,x^{8}+b^{2} c \,x^{8}+a^{2} d \,x^{4}+2 a b c \,x^{4}+a^{2} c}d x \] Input:

int(x^2/(b*x^4+a)^2/(d*x^4+c)^(1/2),x)
 

Output:

int((sqrt(c + d*x**4)*x**2)/(a**2*c + a**2*d*x**4 + 2*a*b*c*x**4 + 2*a*b*d 
*x**8 + b**2*c*x**8 + b**2*d*x**12),x)