\(\int \frac {x^{-1-n (-3+p)} (a+b x^n)^p}{(c+d x^n)^4} \, dx\) [560]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 73 \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=\frac {a^3 x^{n (3-p)} \left (a+b x^n\right )^{-3+p} \operatorname {Hypergeometric2F1}\left (4,3-p,4-p,\frac {(b c-a d) x^n}{c \left (a+b x^n\right )}\right )}{c^4 n (3-p)} \] Output:

a^3*x^(n*(3-p))*(a+b*x^n)^(-3+p)*hypergeom([4, 3-p],[4-p],(-a*d+b*c)*x^n/c 
/(a+b*x^n))/c^4/n/(3-p)
 

Mathematica [A] (warning: unable to verify)

Time = 0.16 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.41 \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=-\frac {x^{-n (-3+p)} \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} \left (1+\frac {d x^n}{c}\right )^{-3+p} \operatorname {Hypergeometric2F1}\left (3-p,-p,4-p,\frac {-\frac {b x^n}{a}+\frac {d x^n}{c}}{1+\frac {d x^n}{c}}\right )}{c^4 n (-3+p)} \] Input:

Integrate[(x^(-1 - n*(-3 + p))*(a + b*x^n)^p)/(c + d*x^n)^4,x]
 

Output:

-(((a + b*x^n)^p*(1 + (d*x^n)/c)^(-3 + p)*Hypergeometric2F1[3 - p, -p, 4 - 
 p, (-((b*x^n)/a) + (d*x^n)/c)/(1 + (d*x^n)/c)])/(c^4*n*(-3 + p)*x^(n*(-3 
+ p))*(1 + (b*x^n)/a)^p))
 

Rubi [A] (warning: unable to verify)

Time = 0.43 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.45, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{-n (p-3)-1} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \int \frac {x^{n (3-p)-1} \left (\frac {b x^n}{a}+1\right )^p}{\left (d x^n+c\right )^4}dx\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {x^{n (3-p)} \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \left (\frac {d x^n}{c}+1\right )^{p-3} \operatorname {Hypergeometric2F1}\left (3-p,-p,4-p,-\frac {\frac {b x^n}{a}-\frac {d x^n}{c}}{\frac {d x^n}{c}+1}\right )}{c^4 n (3-p)}\)

Input:

Int[(x^(-1 - n*(-3 + p))*(a + b*x^n)^p)/(c + d*x^n)^4,x]
 

Output:

(x^(n*(3 - p))*(a + b*x^n)^p*(1 + (d*x^n)/c)^(-3 + p)*Hypergeometric2F1[3 
- p, -p, 4 - p, -(((b*x^n)/a - (d*x^n)/c)/(1 + (d*x^n)/c))])/(c^4*n*(3 - p 
)*(1 + (b*x^n)/a)^p)
 

Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [F]

\[\int \frac {x^{-1-n \left (-3+p \right )} \left (a +b \,x^{n}\right )^{p}}{\left (c +d \,x^{n}\right )^{4}}d x\]

Input:

int(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^4,x)
 

Output:

int(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^4,x)
 

Fricas [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=\int { \frac {{\left (b x^{n} + a\right )}^{p} x^{-n {\left (p - 3\right )} - 1}}{{\left (d x^{n} + c\right )}^{4}} \,d x } \] Input:

integrate(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^4,x, algorithm="fricas")
 

Output:

integral((b*x^n + a)^p*x^(-n*p + 3*n - 1)/(d^4*x^(4*n) + 4*c*d^3*x^(3*n) + 
 6*c^2*d^2*x^(2*n) + 4*c^3*d*x^n + c^4), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=\text {Timed out} \] Input:

integrate(x**(-1-n*(-3+p))*(a+b*x**n)**p/(c+d*x**n)**4,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=\int { \frac {{\left (b x^{n} + a\right )}^{p} x^{-n {\left (p - 3\right )} - 1}}{{\left (d x^{n} + c\right )}^{4}} \,d x } \] Input:

integrate(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^4,x, algorithm="maxima")
 

Output:

integrate((b*x^n + a)^p*x^(-n*(p - 3) - 1)/(d*x^n + c)^4, x)
 

Giac [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=\int { \frac {{\left (b x^{n} + a\right )}^{p} x^{-n {\left (p - 3\right )} - 1}}{{\left (d x^{n} + c\right )}^{4}} \,d x } \] Input:

integrate(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^4,x, algorithm="giac")
 

Output:

integrate((b*x^n + a)^p*x^(-n*(p - 3) - 1)/(d*x^n + c)^4, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=\int \frac {{\left (a+b\,x^n\right )}^p}{x^{n\,\left (p-3\right )+1}\,{\left (c+d\,x^n\right )}^4} \,d x \] Input:

int((a + b*x^n)^p/(x^(n*(p - 3) + 1)*(c + d*x^n)^4),x)
 

Output:

int((a + b*x^n)^p/(x^(n*(p - 3) + 1)*(c + d*x^n)^4), x)
 

Reduce [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^4} \, dx=\text {too large to display} \] Input:

int(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^4,x)
 

Output:

( - x**(3*n)*(x**n*b + a)**p*a**3*b*d**3*p**3 - 7*x**(3*n)*(x**n*b + a)**p 
*a**3*b*d**3*p**2 - 16*x**(3*n)*(x**n*b + a)**p*a**3*b*d**3*p - 12*x**(3*n 
)*(x**n*b + a)**p*a**3*b*d**3 + 9*x**(3*n)*(x**n*b + a)**p*a**2*b**2*c*d** 
2*p**2 + 33*x**(3*n)*(x**n*b + a)**p*a**2*b**2*c*d**2*p + 30*x**(3*n)*(x** 
n*b + a)**p*a**2*b**2*c*d**2 - 16*x**(3*n)*(x**n*b + a)**p*a*b**3*c**2*d*p 
 - 28*x**(3*n)*(x**n*b + a)**p*a*b**3*c**2*d + 8*x**(3*n)*(x**n*b + a)**p* 
b**4*c**3 - x**(2*n)*(x**n*b + a)**p*a**4*d**3*p**3 - 7*x**(2*n)*(x**n*b + 
 a)**p*a**4*d**3*p**2 - 16*x**(2*n)*(x**n*b + a)**p*a**4*d**3*p - 12*x**(2 
*n)*(x**n*b + a)**p*a**4*d**3 + x**(2*n)*(x**n*b + a)**p*a**3*b*c*d**2*p** 
3 + 12*x**(2*n)*(x**n*b + a)**p*a**3*b*c*d**2*p**2 + 29*x**(2*n)*(x**n*b + 
 a)**p*a**3*b*c*d**2*p + 18*x**(2*n)*(x**n*b + a)**p*a**3*b*c*d**2 - 5*x** 
(2*n)*(x**n*b + a)**p*a**2*b**2*c**2*d*p**2 - 17*x**(2*n)*(x**n*b + a)**p* 
a**2*b**2*c**2*d*p - 6*x**(2*n)*(x**n*b + a)**p*a**2*b**2*c**2*d + 4*x**(2 
*n)*(x**n*b + a)**p*a*b**3*c**3*p + x**n*(x**n*b + a)**p*a**4*c*d**2*p**3 
+ 3*x**n*(x**n*b + a)**p*a**4*c*d**2*p**2 - 4*x**n*(x**n*b + a)**p*a**4*c* 
d**2*p - 12*x**n*(x**n*b + a)**p*a**4*c*d**2 - x**n*(x**n*b + a)**p*a**3*b 
*c**2*d*p**3 - 7*x**n*(x**n*b + a)**p*a**3*b*c**2*d*p**2 + 12*x**n*(x**n*b 
 + a)**p*a**3*b*c**2*d*p + 12*x**n*(x**n*b + a)**p*a**3*b*c**2*d + 4*x**n* 
(x**n*b + a)**p*a**2*b**2*c**3*p**2 - 8*x**n*(x**n*b + a)**p*a**2*b**2*c** 
3*p - 6*x**(n*p + 3*n)*int((x**(3*n)*(x**n*b + a)**p)/(x**(n*p + 5*n)*a...