\(\int \frac {x^{-1-n (-3+p)} (a+b x^n)^p}{(c+d x^n)^5} \, dx\) [561]

Optimal result
Mathematica [C] (verified)
Rubi [C] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 140 \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\frac {x^{n (3-p)} \left (a+b x^n\right )^{1+p}}{a c n (3-p) \left (c+d x^n\right )^4}-\frac {a^3 (4 b c-a d (1+p)) x^{n (4-p)} \left (a+b x^n\right )^{-4+p} \operatorname {Hypergeometric2F1}\left (5,4-p,5-p,\frac {(b c-a d) x^n}{c \left (a+b x^n\right )}\right )}{c^6 n (3-p) (4-p)} \] Output:

x^(n*(3-p))*(a+b*x^n)^(p+1)/a/c/n/(3-p)/(c+d*x^n)^4-a^3*(4*b*c-a*d*(p+1))* 
x^(n*(4-p))*(a+b*x^n)^(-4+p)*hypergeom([5, 4-p],[5-p],(-a*d+b*c)*x^n/c/(a+ 
b*x^n))/c^6/n/(3-p)/(4-p)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 5 in optimal.

Time = 0.58 (sec) , antiderivative size = 421, normalized size of antiderivative = 3.01 \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\frac {p \left (2-3 p+p^2\right ) x^{-n (-3+p)} \left (a+b x^n\right )^p \left (4 \left (3 c+d p x^n\right ) \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,1-p\right )-6 \left (2 c+d (-1+p) x^n\right ) \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,2-p\right )+4 c \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,3-p\right )-8 d x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,3-p\right )+4 d p x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,3-p\right )+3 d x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,4-p\right )-d p x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,4-p\right )-4 c \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,-p\right )-d x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,-p\right )-d p x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (a+b x^n\right )},1,-p\right )\right )}{24 c^2 n \left (c+d x^n\right )^4} \] Input:

Integrate[(x^(-1 - n*(-3 + p))*(a + b*x^n)^p)/(c + d*x^n)^5,x]
 

Output:

(p*(2 - 3*p + p^2)*(a + b*x^n)^p*(4*(3*c + d*p*x^n)*HurwitzLerchPhi[((b*c 
- a*d)*x^n)/(c*(a + b*x^n)), 1, 1 - p] - 6*(2*c + d*(-1 + p)*x^n)*HurwitzL 
erchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 2 - p] + 4*c*HurwitzLerchPhi 
[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 3 - p] - 8*d*x^n*HurwitzLerchPhi[(( 
b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 3 - p] + 4*d*p*x^n*HurwitzLerchPhi[((b 
*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 3 - p] + 3*d*x^n*HurwitzLerchPhi[((b*c 
- a*d)*x^n)/(c*(a + b*x^n)), 1, 4 - p] - d*p*x^n*HurwitzLerchPhi[((b*c - a 
*d)*x^n)/(c*(a + b*x^n)), 1, 4 - p] - 4*c*HurwitzLerchPhi[((b*c - a*d)*x^n 
)/(c*(a + b*x^n)), 1, -p] - d*x^n*HurwitzLerchPhi[((b*c - a*d)*x^n)/(c*(a 
+ b*x^n)), 1, -p] - d*p*x^n*HurwitzLerchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^ 
n)), 1, -p]))/(24*c^2*n*x^(n*(-3 + p))*(c + d*x^n)^4)
 

Rubi [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 5 in optimal.

Time = 1.38 (sec) , antiderivative size = 430, normalized size of antiderivative = 3.07, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {1013, 1012}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{-n (p-3)-1} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx\)

\(\Big \downarrow \) 1013

\(\displaystyle \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} \int \frac {x^{n (3-p)-1} \left (\frac {b x^n}{a}+1\right )^p}{\left (d x^n+c\right )^5}dx\)

\(\Big \downarrow \) 1012

\(\displaystyle \frac {(1-p) (2-p) p x^{n (3-p)} \left (a+b x^n\right )^p \left (-8 d x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,3-p\right )+4 d p x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,3-p\right )+3 d x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,4-p\right )-d p x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,4-p\right )-d x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,-p\right )-d p x^n \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,-p\right )+4 \left (3 c+d p x^n\right ) \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,1-p\right )-6 \left (2 c-d (1-p) x^n\right ) \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,2-p\right )+4 c \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,3-p\right )-4 c \Phi \left (\frac {(b c-a d) x^n}{c \left (b x^n+a\right )},1,-p\right )\right )}{24 c^6 n \left (\frac {d x^n}{c}+1\right )^4}\)

Input:

Int[(x^(-1 - n*(-3 + p))*(a + b*x^n)^p)/(c + d*x^n)^5,x]
 

Output:

((1 - p)*(2 - p)*p*x^(n*(3 - p))*(a + b*x^n)^p*(4*(3*c + d*p*x^n)*HurwitzL 
erchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 1 - p] - 6*(2*c - d*(1 - p)* 
x^n)*HurwitzLerchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 2 - p] + 4*c*Hu 
rwitzLerchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 3 - p] - 8*d*x^n*Hurwi 
tzLerchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 3 - p] + 4*d*p*x^n*Hurwit 
zLerchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 3 - p] + 3*d*x^n*HurwitzLe 
rchPhi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 4 - p] - d*p*x^n*HurwitzLerch 
Phi[((b*c - a*d)*x^n)/(c*(a + b*x^n)), 1, 4 - p] - 4*c*HurwitzLerchPhi[((b 
*c - a*d)*x^n)/(c*(a + b*x^n)), 1, -p] - d*x^n*HurwitzLerchPhi[((b*c - a*d 
)*x^n)/(c*(a + b*x^n)), 1, -p] - d*p*x^n*HurwitzLerchPhi[((b*c - a*d)*x^n) 
/(c*(a + b*x^n)), 1, -p]))/(24*c^6*n*(1 + (d*x^n)/c)^4)
 

Defintions of rubi rules used

rule 1012
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m 
+ 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, 
 b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n 
 - 1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 1013
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_ 
))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^ 
n/a))^FracPart[p])   Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; 
 FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] & 
& NeQ[m, n - 1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
Maple [F]

\[\int \frac {x^{-1-n \left (-3+p \right )} \left (a +b \,x^{n}\right )^{p}}{\left (c +d \,x^{n}\right )^{5}}d x\]

Input:

int(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^5,x)
 

Output:

int(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^5,x)
 

Fricas [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\int { \frac {{\left (b x^{n} + a\right )}^{p} x^{-n {\left (p - 3\right )} - 1}}{{\left (d x^{n} + c\right )}^{5}} \,d x } \] Input:

integrate(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^5,x, algorithm="fricas")
 

Output:

integral((b*x^n + a)^p*x^(-n*p + 3*n - 1)/(d^5*x^(5*n) + 5*c*d^4*x^(4*n) + 
 10*c^2*d^3*x^(3*n) + 10*c^3*d^2*x^(2*n) + 5*c^4*d*x^n + c^5), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\text {Timed out} \] Input:

integrate(x**(-1-n*(-3+p))*(a+b*x**n)**p/(c+d*x**n)**5,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\int { \frac {{\left (b x^{n} + a\right )}^{p} x^{-n {\left (p - 3\right )} - 1}}{{\left (d x^{n} + c\right )}^{5}} \,d x } \] Input:

integrate(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^5,x, algorithm="maxima")
 

Output:

integrate((b*x^n + a)^p*x^(-n*(p - 3) - 1)/(d*x^n + c)^5, x)
 

Giac [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\int { \frac {{\left (b x^{n} + a\right )}^{p} x^{-n {\left (p - 3\right )} - 1}}{{\left (d x^{n} + c\right )}^{5}} \,d x } \] Input:

integrate(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^5,x, algorithm="giac")
 

Output:

integrate((b*x^n + a)^p*x^(-n*(p - 3) - 1)/(d*x^n + c)^5, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\int \frac {{\left (a+b\,x^n\right )}^p}{x^{n\,\left (p-3\right )+1}\,{\left (c+d\,x^n\right )}^5} \,d x \] Input:

int((a + b*x^n)^p/(x^(n*(p - 3) + 1)*(c + d*x^n)^5),x)
 

Output:

int((a + b*x^n)^p/(x^(n*(p - 3) + 1)*(c + d*x^n)^5), x)
 

Reduce [F]

\[ \int \frac {x^{-1-n (-3+p)} \left (a+b x^n\right )^p}{\left (c+d x^n\right )^5} \, dx=\text {too large to display} \] Input:

int(x^(-1-n*(-3+p))*(a+b*x^n)^p/(c+d*x^n)^5,x)
 

Output:

too large to display