\(\int \frac {a c+a d x+b c x^3+b d x^4}{(a+b x^3)^{5/2}} \, dx\) [56]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 522 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {2 x (c+d x)}{3 a \sqrt {a+b x^3}}-\frac {2 d \sqrt {a+b x^3}}{3 a b^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {\sqrt {2-\sqrt {3}} d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} a^{2/3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{b} c+\left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} a b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

2/3*x*(d*x+c)/a/(b*x^3+a)^(1/2)-2/3*d*(b*x^3+a)^(1/2)/a/b^(2/3)/((1+3^(1/2 
))*a^(1/3)+b^(1/3)*x)+1/3*(1/2*6^(1/2)-1/2*2^(1/2))*d*(a^(1/3)+b^(1/3)*x)* 
((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2 
)^(1/2)*EllipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^( 
1/3)*x),I*3^(1/2)+2*I)*3^(1/4)/a^(2/3)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x 
)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)+2/9*(1/2*6^(1/2 
)+1/2*2^(1/2))*(b^(1/3)*c+(1-3^(1/2))*a^(1/3)*d)*(a^(1/3)+b^(1/3)*x)*((a^( 
2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/ 
2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)* 
x),I*3^(1/2)+2*I)*3^(3/4)/a/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/ 
2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.05 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.18 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {x \left (4 c+2 c \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )+3 d x \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {3}{2},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{6 a \sqrt {a+b x^3}} \] Input:

Integrate[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(5/2),x]
 

Output:

(x*(4*c + 2*c*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^ 
3)/a)] + 3*d*x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[2/3, 3/2, 5/3, -((b*x 
^3)/a)]))/(6*a*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 527, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {2019, 2394, 27, 2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 2019

\(\displaystyle \int \frac {c+d x}{\left (a+b x^3\right )^{3/2}}dx\)

\(\Big \downarrow \) 2394

\(\displaystyle \frac {2 x (c+d x)}{3 a \sqrt {a+b x^3}}-\frac {2 \int -\frac {c-d x}{2 \sqrt {b x^3+a}}dx}{3 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {c-d x}{\sqrt {b x^3+a}}dx}{3 a}+\frac {2 x (c+d x)}{3 a \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 2417

\(\displaystyle \frac {\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \int \frac {1}{\sqrt {b x^3+a}}dx-\frac {d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}}{3 a}+\frac {2 x (c+d x)}{3 a \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}}{3 a}+\frac {2 x (c+d x)}{3 a \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}+c\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {d \left (\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt [3]{b}}}{3 a}+\frac {2 x (c+d x)}{3 a \sqrt {a+b x^3}}\)

Input:

Int[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(5/2),x]
 

Output:

(2*x*(c + d*x))/(3*a*Sqrt[a + b*x^3]) + (-((d*((2*Sqrt[a + b*x^3])/(b^(1/3 
)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3 
)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/( 
(1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1 
/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(b 
^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/ 
3)*x)^2]*Sqrt[a + b*x^3])))/b^(1/3)) + (2*Sqrt[2 + Sqrt[3]]*(c + ((1 - Sqr 
t[3])*a^(1/3)*d)/b^(1/3))*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^ 
(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[Ar 
cSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)* 
x)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x) 
)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3]))/(3*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2019
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px 
, Qx, x]^p*Qx^(p + q), x] /; FreeQ[q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && 
 EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
 

rule 2394
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-x)*Pq*((a + b 
*x^n)^(p + 1)/(a*n*(p + 1))), x] + Simp[1/(a*n*(p + 1))   Int[ExpandToSum[n 
*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x 
] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 0.56 (sec) , antiderivative size = 765, normalized size of antiderivative = 1.47

method result size
elliptic \(-\frac {2 b \left (-\frac {d \,x^{2}}{3 a b}-\frac {c x}{3 a b}\right )}{\sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 i c \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{9 a b \sqrt {b \,x^{3}+a}}+\frac {2 i d \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )+\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{b}\right )}{9 a b \sqrt {b \,x^{3}+a}}\) \(765\)
default \(\text {Expression too large to display}\) \(1662\)

Input:

int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2*b*(-1/3*d/a/b*x^2-1/3*c/a/b*x)/((x^3+a/b)*b)^(1/2)-2/9*I*c/a*3^(1/2)/b* 
(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))* 
3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^( 
1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/ 
2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1 
/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b 
^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3 
/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+2/9*I*d/a*3^(1 
/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^( 
1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a* 
b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1 
/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3 
+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*Elliptic 
E(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3 
^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2 
)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+1/b*(-a*b^2)^(1/3)*Ellipti 
cF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))* 
3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^ 
2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.18 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {2 \, {\left ({\left (b c x^{3} + a c\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) + {\left (b d x^{3} + a d\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right ) + {\left (b d x^{2} + b c x\right )} \sqrt {b x^{3} + a}\right )}}{3 \, {\left (a b^{2} x^{3} + a^{2} b\right )}} \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(5/2),x, algorithm="fricas 
")
 

Output:

2/3*((b*c*x^3 + a*c)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) + (b*d*x^3 
+ a*d)*sqrt(b)*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/b, x 
)) + (b*d*x^2 + b*c*x)*sqrt(b*x^3 + a))/(a*b^2*x^3 + a^2*b)
 

Sympy [A] (verification not implemented)

Time = 5.09 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.31 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\frac {c x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {5}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {4}{3}\right )} + \frac {d x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {2}{3}, \frac {5}{2} \\ \frac {5}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {5}{3}\right )} + \frac {b c x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {4}{3}, \frac {5}{2} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {5}{2}} \Gamma \left (\frac {7}{3}\right )} + \frac {b d x^{5} \Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{3}, \frac {5}{2} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {5}{2}} \Gamma \left (\frac {8}{3}\right )} \] Input:

integrate((b*d*x**4+b*c*x**3+a*d*x+a*c)/(b*x**3+a)**(5/2),x)
 

Output:

c*x*gamma(1/3)*hyper((1/3, 5/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**( 
3/2)*gamma(4/3)) + d*x**2*gamma(2/3)*hyper((2/3, 5/2), (5/3,), b*x**3*exp_ 
polar(I*pi)/a)/(3*a**(3/2)*gamma(5/3)) + b*c*x**4*gamma(4/3)*hyper((4/3, 5 
/2), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(5/2)*gamma(7/3)) + b*d*x**5* 
gamma(5/3)*hyper((5/3, 5/2), (8/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(5/2) 
*gamma(8/3))
 

Maxima [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\int { \frac {b d x^{4} + b c x^{3} + a d x + a c}{{\left (b x^{3} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(5/2),x, algorithm="maxima 
")
 

Output:

integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)/(b*x^3 + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\int { \frac {b d x^{4} + b c x^{3} + a d x + a c}{{\left (b x^{3} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(5/2),x, algorithm="giac")
 

Output:

integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)/(b*x^3 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\int \frac {b\,d\,x^4+b\,c\,x^3+a\,d\,x+a\,c}{{\left (b\,x^3+a\right )}^{5/2}} \,d x \] Input:

int((a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(5/2),x)
 

Output:

int((a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(5/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{5/2}} \, dx=\left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) c +\left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \right ) d \] Input:

int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(5/2),x)
 

Output:

int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*c + int((sqrt(a + 
b*x**3)*x)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)*d