\(\int \frac {a c+a d x+b c x^3+b d x^4}{(a+b x^3)^{7/2}} \, dx\) [57]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 554 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}+\frac {2 x (7 c+5 d x)}{27 a^2 \sqrt {a+b x^3}}-\frac {10 d \sqrt {a+b x^3}}{27 a^2 b^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {5 \sqrt {2-\sqrt {3}} d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{9\ 3^{3/4} a^{5/3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 \sqrt {2+\sqrt {3}} \left (7 \sqrt [3]{b} c+5 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{27 \sqrt [4]{3} a^2 b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

2/9*x*(d*x+c)/a/(b*x^3+a)^(3/2)+2/27*x*(5*d*x+7*c)/a^2/(b*x^3+a)^(1/2)-10/ 
27*d*(b*x^3+a)^(1/2)/a^2/b^(2/3)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)+5/27*(1/2 
*6^(1/2)-1/2*2^(1/2))*d*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^ 
(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*EllipticE(((1-3^(1/2)) 
*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(1/4) 
/a^(5/3)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3) 
*x)^2)^(1/2)/(b*x^3+a)^(1/2)+2/81*(1/2*6^(1/2)+1/2*2^(1/2))*(7*b^(1/3)*c+5 
*(1-3^(1/2))*a^(1/3)*d)*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^ 
(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2)) 
*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4) 
/a^2/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^ 
2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.08 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.22 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\frac {4 c x \left (10 a+7 b x^3\right )+14 c x \left (a+b x^3\right ) \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )+27 d x^2 \left (a+b x^3\right ) \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {2}{3},\frac {5}{2},\frac {5}{3},-\frac {b x^3}{a}\right )}{54 a^2 \left (a+b x^3\right )^{3/2}} \] Input:

Integrate[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(7/2),x]
 

Output:

(4*c*x*(10*a + 7*b*x^3) + 14*c*x*(a + b*x^3)*Sqrt[1 + (b*x^3)/a]*Hypergeom 
etric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)] + 27*d*x^2*(a + b*x^3)*Sqrt[1 + (b*x 
^3)/a]*Hypergeometric2F1[2/3, 5/2, 5/3, -((b*x^3)/a)])/(54*a^2*(a + b*x^3) 
^(3/2))
 

Rubi [A] (verified)

Time = 1.13 (sec) , antiderivative size = 565, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2019, 2394, 27, 2394, 27, 2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx\)

\(\Big \downarrow \) 2019

\(\displaystyle \int \frac {c+d x}{\left (a+b x^3\right )^{5/2}}dx\)

\(\Big \downarrow \) 2394

\(\displaystyle \frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}-\frac {2 \int -\frac {7 c+5 d x}{2 \left (b x^3+a\right )^{3/2}}dx}{9 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {7 c+5 d x}{\left (b x^3+a\right )^{3/2}}dx}{9 a}+\frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}\)

\(\Big \downarrow \) 2394

\(\displaystyle \frac {\frac {2 x (7 c+5 d x)}{3 a \sqrt {a+b x^3}}-\frac {2 \int -\frac {7 c-5 d x}{2 \sqrt {b x^3+a}}dx}{3 a}}{9 a}+\frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {7 c-5 d x}{\sqrt {b x^3+a}}dx}{3 a}+\frac {2 x (7 c+5 d x)}{3 a \sqrt {a+b x^3}}}{9 a}+\frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}\)

\(\Big \downarrow \) 2417

\(\displaystyle \frac {\frac {\left (\frac {5 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}+7 c\right ) \int \frac {1}{\sqrt {b x^3+a}}dx-\frac {5 d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}}{3 a}+\frac {2 x (7 c+5 d x)}{3 a \sqrt {a+b x^3}}}{9 a}+\frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\frac {\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (\frac {5 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}+7 c\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {5 d \int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}}{3 a}+\frac {2 x (7 c+5 d x)}{3 a \sqrt {a+b x^3}}}{9 a}+\frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {\frac {\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (\frac {5 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d}{\sqrt [3]{b}}+7 c\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {5 d \left (\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt [3]{b}}}{3 a}+\frac {2 x (7 c+5 d x)}{3 a \sqrt {a+b x^3}}}{9 a}+\frac {2 x (c+d x)}{9 a \left (a+b x^3\right )^{3/2}}\)

Input:

Int[(a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(7/2),x]
 

Output:

(2*x*(c + d*x))/(9*a*(a + b*x^3)^(3/2)) + ((2*x*(7*c + 5*d*x))/(3*a*Sqrt[a 
 + b*x^3]) + ((-5*d*((2*Sqrt[a + b*x^3])/(b^(1/3)*((1 + Sqrt[3])*a^(1/3) + 
 b^(1/3)*x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sq 
rt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^ 
(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqr 
t[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqrt[(a^(1/3)*(a^(1 
/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])) 
)/b^(1/3) + (2*Sqrt[2 + Sqrt[3]]*(7*c + (5*(1 - Sqrt[3])*a^(1/3)*d)/b^(1/3 
))*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/ 
((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^( 
1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/( 
3^(1/4)*b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3 
) + b^(1/3)*x)^2]*Sqrt[a + b*x^3]))/(3*a))/(9*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2019
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px 
, Qx, x]^p*Qx^(p + q), x] /; FreeQ[q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && 
 EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
 

rule 2394
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-x)*Pq*((a + b 
*x^n)^(p + 1)/(a*n*(p + 1))), x] + Simp[1/(a*n*(p + 1))   Int[ExpandToSum[n 
*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x 
] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 0.57 (sec) , antiderivative size = 809, normalized size of antiderivative = 1.46

method result size
elliptic \(\text {Expression too large to display}\) \(809\)
default \(\text {Expression too large to display}\) \(1782\)

Input:

int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(7/2),x,method=_RETURNVERBOSE)
 

Output:

(2/9*d/a/b^2*x^2+2/9*c/a/b^2*x)*(b*x^3+a)^(1/2)/(x^3+a/b)^2-2*b*(-5/27/b/a 
^2*d*x^2-7/27/b/a^2*c*x)/((x^3+a/b)*b)^(1/2)-14/81*I*c/a^2*3^(1/2)/b*(-a*b 
^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/ 
2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+ 
1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3 
^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*E 
llipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^( 
1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b* 
(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+10/81*I*d/a^2*3^(1/ 
2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1 
/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b 
^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/ 
3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+ 
a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*EllipticE 
(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^ 
(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2) 
^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2))+1/b*(-a*b^2)^(1/3)*Elliptic 
F(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3 
^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2 
)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.28 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\frac {2 \, {\left (7 \, {\left (b^{2} c x^{6} + 2 \, a b c x^{3} + a^{2} c\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) + 5 \, {\left (b^{2} d x^{6} + 2 \, a b d x^{3} + a^{2} d\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right ) + {\left (5 \, b^{2} d x^{5} + 7 \, b^{2} c x^{4} + 8 \, a b d x^{2} + 10 \, a b c x\right )} \sqrt {b x^{3} + a}\right )}}{27 \, {\left (a^{2} b^{3} x^{6} + 2 \, a^{3} b^{2} x^{3} + a^{4} b\right )}} \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(7/2),x, algorithm="fricas 
")
 

Output:

2/27*(7*(b^2*c*x^6 + 2*a*b*c*x^3 + a^2*c)*sqrt(b)*weierstrassPInverse(0, - 
4*a/b, x) + 5*(b^2*d*x^6 + 2*a*b*d*x^3 + a^2*d)*sqrt(b)*weierstrassZeta(0, 
 -4*a/b, weierstrassPInverse(0, -4*a/b, x)) + (5*b^2*d*x^5 + 7*b^2*c*x^4 + 
 8*a*b*d*x^2 + 10*a*b*c*x)*sqrt(b*x^3 + a))/(a^2*b^3*x^6 + 2*a^3*b^2*x^3 + 
 a^4*b)
 

Sympy [A] (verification not implemented)

Time = 16.50 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.29 \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\frac {c x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {7}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {5}{2}} \Gamma \left (\frac {4}{3}\right )} + \frac {d x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {2}{3}, \frac {7}{2} \\ \frac {5}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {5}{2}} \Gamma \left (\frac {5}{3}\right )} + \frac {b c x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {4}{3}, \frac {7}{2} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {7}{2}} \Gamma \left (\frac {7}{3}\right )} + \frac {b d x^{5} \Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {5}{3}, \frac {7}{2} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {7}{2}} \Gamma \left (\frac {8}{3}\right )} \] Input:

integrate((b*d*x**4+b*c*x**3+a*d*x+a*c)/(b*x**3+a)**(7/2),x)
 

Output:

c*x*gamma(1/3)*hyper((1/3, 7/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**( 
5/2)*gamma(4/3)) + d*x**2*gamma(2/3)*hyper((2/3, 7/2), (5/3,), b*x**3*exp_ 
polar(I*pi)/a)/(3*a**(5/2)*gamma(5/3)) + b*c*x**4*gamma(4/3)*hyper((4/3, 7 
/2), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(7/2)*gamma(7/3)) + b*d*x**5* 
gamma(5/3)*hyper((5/3, 7/2), (8/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(7/2) 
*gamma(8/3))
 

Maxima [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\int { \frac {b d x^{4} + b c x^{3} + a d x + a c}{{\left (b x^{3} + a\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(7/2),x, algorithm="maxima 
")
 

Output:

integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)/(b*x^3 + a)^(7/2), x)
 

Giac [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\int { \frac {b d x^{4} + b c x^{3} + a d x + a c}{{\left (b x^{3} + a\right )}^{\frac {7}{2}}} \,d x } \] Input:

integrate((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(7/2),x, algorithm="giac")
 

Output:

integrate((b*d*x^4 + b*c*x^3 + a*d*x + a*c)/(b*x^3 + a)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\int \frac {b\,d\,x^4+b\,c\,x^3+a\,d\,x+a\,c}{{\left (b\,x^3+a\right )}^{7/2}} \,d x \] Input:

int((a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(7/2),x)
 

Output:

int((a*c + a*d*x + b*c*x^3 + b*d*x^4)/(a + b*x^3)^(7/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {a c+a d x+b c x^3+b d x^4}{\left (a+b x^3\right )^{7/2}} \, dx=\left (\int \frac {\sqrt {b \,x^{3}+a}}{b^{3} x^{9}+3 a \,b^{2} x^{6}+3 a^{2} b \,x^{3}+a^{3}}d x \right ) c +\left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b^{3} x^{9}+3 a \,b^{2} x^{6}+3 a^{2} b \,x^{3}+a^{3}}d x \right ) d \] Input:

int((b*d*x^4+b*c*x^3+a*d*x+a*c)/(b*x^3+a)^(7/2),x)
 

Output:

int(sqrt(a + b*x**3)/(a**3 + 3*a**2*b*x**3 + 3*a*b**2*x**6 + b**3*x**9),x) 
*c + int((sqrt(a + b*x**3)*x)/(a**3 + 3*a**2*b*x**3 + 3*a*b**2*x**6 + b**3 
*x**9),x)*d