\(\int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx\) [64]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 257 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=-\frac {2 \sqrt {1-x^3}}{1+\sqrt {3}-x}+\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} E\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}-\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right ),-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \] Output:

-2*(-x^3+1)^(1/2)/(1+3^(1/2)-x)+3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*(1-x)*(( 
x^2+x+1)/(1+3^(1/2)-x)^2)^(1/2)*EllipticE((1-3^(1/2)-x)/(1+3^(1/2)-x),I*3^ 
(1/2)+2*I)/((1-x)/(1+3^(1/2)-x)^2)^(1/2)/(-x^3+1)^(1/2)-4*3^(1/4)*(1/2*6^( 
1/2)+1/2*2^(1/2))*(1-x)*((x^2+x+1)/(1+3^(1/2)-x)^2)^(1/2)*EllipticF((1-3^( 
1/2)-x)/(1+3^(1/2)-x),I*3^(1/2)+2*I)/((1-x)/(1+3^(1/2)-x)^2)^(1/2)/(-x^3+1 
)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.17 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=\left (1+\sqrt {3}\right ) x \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},x^3\right )-\frac {1}{2} x^2 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},x^3\right ) \] Input:

Integrate[(1 + Sqrt[3] - x)/Sqrt[1 - x^3],x]
 

Output:

(1 + Sqrt[3])*x*Hypergeometric2F1[1/3, 1/2, 4/3, x^3] - (x^2*Hypergeometri 
c2F1[1/2, 2/3, 5/3, x^3])/2
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {2417, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-x+\sqrt {3}+1}{\sqrt {1-x^3}} \, dx\)

\(\Big \downarrow \) 2417

\(\displaystyle 2 \sqrt {3} \int \frac {1}{\sqrt {1-x^3}}dx+\int \frac {-x-\sqrt {3}+1}{\sqrt {1-x^3}}dx\)

\(\Big \downarrow \) 759

\(\displaystyle \int \frac {-x-\sqrt {3}+1}{\sqrt {1-x^3}}dx-\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 2416

\(\displaystyle -\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}+\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {1-x^3}}{-x+\sqrt {3}+1}\)

Input:

Int[(1 + Sqrt[3] - x)/Sqrt[1 - x^3],x]
 

Output:

(-2*Sqrt[1 - x^3])/(1 + Sqrt[3] - x) + (3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)* 
Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] - x) 
/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*S 
qrt[1 - x^3]) - (4*3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 
 + Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], 
-7 - 4*Sqrt[3]])/(Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 

rule 2417
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 - Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 
2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.31 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.16

method result size
meijerg \(x \operatorname {hypergeom}\left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], x^{3}\right )+\sqrt {3}\, x \operatorname {hypergeom}\left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], x^{3}\right )-\frac {x^{2} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], x^{3}\right )}{2}\) \(41\)
elliptic \(-\frac {2 i \left (1+\sqrt {3}\right ) \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {i \sqrt {3}}{2}+\frac {1}{2}\right ) \sqrt {3}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}+\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {i \sqrt {3}}{2}+\frac {1}{2}\right ) \sqrt {3}}\, \left (\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )+\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}+1}}\) \(270\)
default \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {i \sqrt {3}}{2}+\frac {1}{2}\right ) \sqrt {3}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}}-\frac {2 i \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {i \sqrt {3}}{2}+\frac {1}{2}\right ) \sqrt {3}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}+1}}+\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {i \sqrt {3}}{2}+\frac {1}{2}\right ) \sqrt {3}}\, \left (\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )+\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}+1}}\) \(368\)

Input:

int((1+3^(1/2)-x)/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

x*hypergeom([1/3,1/2],[4/3],x^3)+3^(1/2)*x*hypergeom([1/3,1/2],[4/3],x^3)- 
1/2*x^2*hypergeom([1/2,2/3],[5/3],x^3)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.09 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=-2 \, {\left (i \, \sqrt {3} + i\right )} {\rm weierstrassPInverse}\left (0, 4, x\right ) - 2 i \, {\rm weierstrassZeta}\left (0, 4, {\rm weierstrassPInverse}\left (0, 4, x\right )\right ) \] Input:

integrate((1+3^(1/2)-x)/(-x^3+1)^(1/2),x, algorithm="fricas")
 

Output:

-2*(I*sqrt(3) + I)*weierstrassPInverse(0, 4, x) - 2*I*weierstrassZeta(0, 4 
, weierstrassPInverse(0, 4, x))
 

Sympy [A] (verification not implemented)

Time = 1.38 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.38 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=- \frac {x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} + \frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} + \frac {\sqrt {3} x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \] Input:

integrate((1+3**(1/2)-x)/(-x**3+1)**(1/2),x)
 

Output:

-x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3*exp_polar(2*I*pi))/(3*gamm 
a(5/3)) + x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar(2*I*pi))/( 
3*gamma(4/3)) + sqrt(3)*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_po 
lar(2*I*pi))/(3*gamma(4/3))
 

Maxima [F]

\[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=\int { -\frac {x - \sqrt {3} - 1}{\sqrt {-x^{3} + 1}} \,d x } \] Input:

integrate((1+3^(1/2)-x)/(-x^3+1)^(1/2),x, algorithm="maxima")
 

Output:

-integrate((x - sqrt(3) - 1)/sqrt(-x^3 + 1), x)
 

Giac [F]

\[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=\int { -\frac {x - \sqrt {3} - 1}{\sqrt {-x^{3} + 1}} \,d x } \] Input:

integrate((1+3^(1/2)-x)/(-x^3+1)^(1/2),x, algorithm="giac")
 

Output:

integrate(-(x - sqrt(3) - 1)/sqrt(-x^3 + 1), x)
 

Mupad [B] (verification not implemented)

Time = 5.81 (sec) , antiderivative size = 342, normalized size of antiderivative = 1.33 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=\sqrt {3}\,x\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{2};\ \frac {4}{3};\ x^3\right )+\frac {6\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {6\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int((3^(1/2) - x + 1)/(1 - x^3)^(1/2),x)
 

Output:

3^(1/2)*x*hypergeom([1/3, 1/2], 4/3, x^3) + (6*(x^3 - 1)^(1/2)*(-(x - (3^( 
1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2 
)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*el 
lipticE(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 
3/2)/((3^(1/2)*1i)/2 - 3/2)))/((1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)*((3 
^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1 
) + x^3)^(1/2)) - (6*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2 
)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^ 
(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1)/((3 
^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2 
)))/((1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(( 
(3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2))
 

Reduce [F]

\[ \int \frac {1+\sqrt {3}-x}{\sqrt {1-x^3}} \, dx=-\sqrt {3}\, \left (\int \frac {\sqrt {-x^{3}+1}}{x^{3}-1}d x \right )-\left (\int \frac {\sqrt {-x^{3}+1}}{x^{3}-1}d x \right )+\int \frac {\sqrt {-x^{3}+1}\, x}{x^{3}-1}d x \] Input:

int((1+3^(1/2)-x)/(-x^3+1)^(1/2),x)
 

Output:

 - sqrt(3)*int(sqrt( - x**3 + 1)/(x**3 - 1),x) - int(sqrt( - x**3 + 1)/(x* 
*3 - 1),x) + int((sqrt( - x**3 + 1)*x)/(x**3 - 1),x)