\(\int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx\) [65]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 144 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=\frac {2 \sqrt {-1+x^3}}{1-\sqrt {3}-x}-\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}} \] Output:

2*(x^3-1)^(1/2)/(1-3^(1/2)-x)-3^(1/4)*(1/2*6^(1/2)+1/2*2^(1/2))*(1-x)*((x^ 
2+x+1)/(1-3^(1/2)-x)^2)^(1/2)*EllipticE((1+3^(1/2)-x)/(1-3^(1/2)-x),2*I-I* 
3^(1/2))/(-(1-x)/(1-3^(1/2)-x)^2)^(1/2)/(x^3-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.44 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=-\frac {x \sqrt {1-x^3} \left (-2 \left (1+\sqrt {3}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},x^3\right )+x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},x^3\right )\right )}{2 \sqrt {-1+x^3}} \] Input:

Integrate[(1 + Sqrt[3] - x)/Sqrt[-1 + x^3],x]
 

Output:

-1/2*(x*Sqrt[1 - x^3]*(-2*(1 + Sqrt[3])*Hypergeometric2F1[1/3, 1/2, 4/3, x 
^3] + x*Hypergeometric2F1[1/2, 2/3, 5/3, x^3]))/Sqrt[-1 + x^3]
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {-x+\sqrt {3}+1}{\sqrt {x^3-1}} \, dx\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {2 \sqrt {x^3-1}}{-x-\sqrt {3}+1}-\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

Input:

Int[(1 + Sqrt[3] - x)/Sqrt[-1 + x^3],x]
 

Output:

(2*Sqrt[-1 + x^3])/(1 - Sqrt[3] - x) - (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - x)* 
Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] - x) 
/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2) 
]*Sqrt[-1 + x^3])
 

Defintions of rubi rules used

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.27 (sec) , antiderivative size = 95, normalized size of antiderivative = 0.66

method result size
meijerg \(\frac {\sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, x \operatorname {hypergeom}\left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], x^{3}\right )}{\sqrt {\operatorname {signum}\left (x^{3}-1\right )}}+\frac {\sqrt {3}\, \sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, x \operatorname {hypergeom}\left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], x^{3}\right )}{\sqrt {\operatorname {signum}\left (x^{3}-1\right )}}-\frac {\sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, x^{2} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], x^{3}\right )}{2 \sqrt {\operatorname {signum}\left (x^{3}-1\right )}}\) \(95\)
elliptic \(\frac {2 \left (1+\sqrt {3}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {i \sqrt {3}}{2}+\frac {1}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}-\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {i \sqrt {3}}{2}+\frac {1}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{\sqrt {x^{3}-1}}\) \(294\)
default \(\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {i \sqrt {3}}{2}+\frac {1}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}+\frac {2 \sqrt {3}\, \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {i \sqrt {3}}{2}+\frac {1}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}-\frac {2 \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {i \sqrt {3}}{2}+\frac {1}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticF}\left (\sqrt {\frac {x -1}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{\sqrt {x^{3}-1}}\) \(407\)

Input:

int((1+3^(1/2)-x)/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/signum(x^3-1)^(1/2)*(-signum(x^3-1))^(1/2)*x*hypergeom([1/3,1/2],[4/3],x 
^3)+3^(1/2)/signum(x^3-1)^(1/2)*(-signum(x^3-1))^(1/2)*x*hypergeom([1/3,1/ 
2],[4/3],x^3)-1/2/signum(x^3-1)^(1/2)*(-signum(x^3-1))^(1/2)*x^2*hypergeom 
([1/2,2/3],[5/3],x^3)
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 21, normalized size of antiderivative = 0.15 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=2 \, {\left (\sqrt {3} + 1\right )} {\rm weierstrassPInverse}\left (0, 4, x\right ) + 2 \, {\rm weierstrassZeta}\left (0, 4, {\rm weierstrassPInverse}\left (0, 4, x\right )\right ) \] Input:

integrate((1+3^(1/2)-x)/(x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

2*(sqrt(3) + 1)*weierstrassPInverse(0, 4, x) + 2*weierstrassZeta(0, 4, wei 
erstrassPInverse(0, 4, x))
 

Sympy [A] (verification not implemented)

Time = 1.39 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.57 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=\frac {i x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {x^{3}} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} - \frac {\sqrt {3} i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3}} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \frac {i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3}} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \] Input:

integrate((1+3**(1/2)-x)/(x**3-1)**(1/2),x)
 

Output:

I*x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3)/(3*gamma(5/3)) - sqrt(3) 
*I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3)/(3*gamma(4/3)) - I*x*gamma 
(1/3)*hyper((1/3, 1/2), (4/3,), x**3)/(3*gamma(4/3))
 

Maxima [F]

\[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=\int { -\frac {x - \sqrt {3} - 1}{\sqrt {x^{3} - 1}} \,d x } \] Input:

integrate((1+3^(1/2)-x)/(x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

-integrate((x - sqrt(3) - 1)/sqrt(x^3 - 1), x)
 

Giac [F]

\[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=\int { -\frac {x - \sqrt {3} - 1}{\sqrt {x^{3} - 1}} \,d x } \] Input:

integrate((1+3^(1/2)-x)/(x^3-1)^(1/2),x, algorithm="giac")
 

Output:

integrate(-(x - sqrt(3) - 1)/sqrt(x^3 - 1), x)
 

Mupad [B] (verification not implemented)

Time = 5.79 (sec) , antiderivative size = 326, normalized size of antiderivative = 2.26 \[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=\frac {\sqrt {3}\,x\,\sqrt {1-x^3}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{2};\ \frac {4}{3};\ x^3\right )}{\sqrt {x^3-1}}+\frac {6\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {6\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int((3^(1/2) - x + 1)/(x^3 - 1)^(1/2),x)
 

Output:

(3^(1/2)*x*(1 - x^3)^(1/2)*hypergeom([1/3, 1/2], 4/3, x^3))/(x^3 - 1)^(1/2 
) + (6*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3 
^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/ 
2 + 3/2))^(1/2)*ellipticE(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), - 
((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(((3^(1/2)*1i)/2 - 1/2)*(( 
3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 
1) + x^3)^(1/2) - (6*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 - 3/2))^ 
(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(-(x - 1)/ 
((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3 
/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(((3^(1/2)*1 
i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1 
i)/2 + 1/2) + 1) + x^3)^(1/2)
 

Reduce [F]

\[ \int \frac {1+\sqrt {3}-x}{\sqrt {-1+x^3}} \, dx=\sqrt {3}\, \left (\int \frac {\sqrt {x^{3}-1}}{x^{3}-1}d x \right )+\int \frac {\sqrt {x^{3}-1}}{x^{3}-1}d x -\left (\int \frac {\sqrt {x^{3}-1}\, x}{x^{3}-1}d x \right ) \] Input:

int((1+3^(1/2)-x)/(x^3-1)^(1/2),x)
 

Output:

sqrt(3)*int(sqrt(x**3 - 1)/(x**3 - 1),x) + int(sqrt(x**3 - 1)/(x**3 - 1),x 
) - int((sqrt(x**3 - 1)*x)/(x**3 - 1),x)