\(\int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx\) [66]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 135 \[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=-\frac {2 \sqrt {-1-x^3}}{1-\sqrt {3}+x}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1-\sqrt {3}+x\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}+x}{1-\sqrt {3}+x}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1+x}{\left (1-\sqrt {3}+x\right )^2}} \sqrt {-1-x^3}} \] Output:

-2*(-x^3-1)^(1/2)/(1+x-3^(1/2))+3^(1/4)*(1/2*6^(1/2)+1/2*2^(1/2))*(1+x)*(( 
x^2-x+1)/(1+x-3^(1/2))^2)^(1/2)*EllipticE((1+x+3^(1/2))/(1+x-3^(1/2)),2*I- 
I*3^(1/2))/(-(1+x)/(1+x-3^(1/2))^2)^(1/2)/(-x^3-1)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.50 \[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=\frac {x \sqrt {1+x^3} \left (2 \left (1+\sqrt {3}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-x^3\right )+x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-x^3\right )\right )}{2 \sqrt {-1-x^3}} \] Input:

Integrate[(1 + Sqrt[3] + x)/Sqrt[-1 - x^3],x]
 

Output:

(x*Sqrt[1 + x^3]*(2*(1 + Sqrt[3])*Hypergeometric2F1[1/3, 1/2, 4/3, -x^3] + 
 x*Hypergeometric2F1[1/2, 2/3, 5/3, -x^3]))/(2*Sqrt[-1 - x^3])
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x+\sqrt {3}+1}{\sqrt {-x^3-1}} \, dx\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {x+\sqrt {3}+1}{x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {x+1}{\left (x-\sqrt {3}+1\right )^2}} \sqrt {-x^3-1}}-\frac {2 \sqrt {-x^3-1}}{x-\sqrt {3}+1}\)

Input:

Int[(1 + Sqrt[3] + x)/Sqrt[-1 - x^3],x]
 

Output:

(-2*Sqrt[-1 - x^3])/(1 - Sqrt[3] + x) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 + x) 
*Sqrt[(1 - x + x^2)/(1 - Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] + x 
)/(1 - Sqrt[3] + x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 + x)/(1 - Sqrt[3] + x)^2 
)]*Sqrt[-1 - x^3])
 

Defintions of rubi rules used

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 0.28 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.39

method result size
meijerg \(-i x \operatorname {hypergeom}\left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], -x^{3}\right )-i \sqrt {3}\, x \operatorname {hypergeom}\left (\left [\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {4}{3}\right ], -x^{3}\right )-\frac {i x^{2} \operatorname {hypergeom}\left (\left [\frac {1}{2}, \frac {2}{3}\right ], \left [\frac {5}{3}\right ], -x^{3}\right )}{2}\) \(52\)
elliptic \(-\frac {2 i \left (1+\sqrt {3}\right ) \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}-\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}}\) \(272\)
default \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}-1}}-\frac {2 i \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {-x^{3}-1}}-\frac {2 i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x +1}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right )}{3 \sqrt {-x^{3}-1}}\) \(370\)

Input:

int((1+3^(1/2)+x)/(-x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-I*x*hypergeom([1/3,1/2],[4/3],-x^3)-I*3^(1/2)*x*hypergeom([1/3,1/2],[4/3] 
,-x^3)-1/2*I*x^2*hypergeom([1/2,2/3],[5/3],-x^3)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 23, normalized size of antiderivative = 0.17 \[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=-2 \, {\left (i \, \sqrt {3} + i\right )} {\rm weierstrassPInverse}\left (0, -4, x\right ) + 2 i \, {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) \] Input:

integrate((1+3^(1/2)+x)/(-x^3-1)^(1/2),x, algorithm="fricas")
 

Output:

-2*(I*sqrt(3) + I)*weierstrassPInverse(0, -4, x) + 2*I*weierstrassZeta(0, 
-4, weierstrassPInverse(0, -4, x))
 

Sympy [A] (verification not implemented)

Time = 1.20 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.73 \[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=- \frac {i x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} - \frac {\sqrt {3} i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \frac {i x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} \] Input:

integrate((1+3**(1/2)+x)/(-x**3-1)**(1/2),x)
 

Output:

-I*x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3*exp_polar(I*pi))/(3*gamm 
a(5/3)) - sqrt(3)*I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_polar( 
I*pi))/(3*gamma(4/3)) - I*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_ 
polar(I*pi))/(3*gamma(4/3))
 

Maxima [F]

\[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=\int { \frac {x + \sqrt {3} + 1}{\sqrt {-x^{3} - 1}} \,d x } \] Input:

integrate((1+3^(1/2)+x)/(-x^3-1)^(1/2),x, algorithm="maxima")
 

Output:

integrate((x + sqrt(3) + 1)/sqrt(-x^3 - 1), x)
 

Giac [F]

\[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=\int { \frac {x + \sqrt {3} + 1}{\sqrt {-x^{3} - 1}} \,d x } \] Input:

integrate((1+3^(1/2)+x)/(-x^3-1)^(1/2),x, algorithm="giac")
 

Output:

integrate((x + sqrt(3) + 1)/sqrt(-x^3 - 1), x)
 

Mupad [B] (verification not implemented)

Time = 5.90 (sec) , antiderivative size = 360, normalized size of antiderivative = 2.67 \[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=\frac {\sqrt {3}\,x\,\sqrt {x^3+1}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{2};\ \frac {4}{3};\ -x^3\right )}{\sqrt {-x^3-1}}-\frac {6\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}+\frac {6\,\sqrt {x^3+1}\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {-x^3-1}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \] Input:

int((x + 3^(1/2) + 1)/(- x^3 - 1)^(1/2),x)
 

Output:

(3^(1/2)*x*(x^3 + 1)^(1/2)*hypergeom([1/3, 1/2], 4/3, -x^3))/(- x^3 - 1)^( 
1/2) - (6*(x^3 + 1)^(1/2)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/ 
2))^(1/2)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/ 
2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticE(asin(((x + 1)/((3^(1/2)*1i)/2 + 
 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((- x^3 - 
1)^(1/2)*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - (( 
3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2)) + (6*(x^3 + 1)^(1/2)*( 
(x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2)*((x + 1)/((3^(1/2 
)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^(1/2)*1i)/2 + 3/2))^ 
(1/2)*ellipticF(asin(((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1 
i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((- x^3 - 1)^(1/2)*(x^3 - x*(((3^(1/2 
)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ((3^(1/2)*1i)/2 - 1/2)*((3^(1 
/2)*1i)/2 + 1/2))^(1/2))
 

Reduce [F]

\[ \int \frac {1+\sqrt {3}+x}{\sqrt {-1-x^3}} \, dx=-i \left (\sqrt {3}\, \left (\int \frac {\sqrt {x^{3}+1}}{x^{3}+1}d x \right )+\int \frac {\sqrt {x^{3}+1}}{x^{3}+1}d x +\int \frac {\sqrt {x^{3}+1}\, x}{x^{3}+1}d x \right ) \] Input:

int((1+3^(1/2)+x)/(-x^3-1)^(1/2),x)
 

Output:

 - i*(sqrt(3)*int(sqrt(x**3 + 1)/(x**3 + 1),x) + int(sqrt(x**3 + 1)/(x**3 
+ 1),x) + int((sqrt(x**3 + 1)*x)/(x**3 + 1),x))