\(\int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx\) [11]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 226 \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\frac {d \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}-\frac {\left (\sqrt {b} c+\sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c+\sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} e\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x}{\sqrt {a}+\sqrt {b} x^2}\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {f \log \left (a+b x^4\right )}{4 b} \] Output:

1/2*d*arctan(b^(1/2)*x^2/a^(1/2))/a^(1/2)/b^(1/2)+1/4*(b^(1/2)*c+a^(1/2)*e 
)*arctan(-1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b^(3/4)+1/4*(b^(1/2 
)*c+a^(1/2)*e)*arctan(1+2^(1/2)*b^(1/4)*x/a^(1/4))*2^(1/2)/a^(3/4)/b^(3/4) 
+1/4*(b^(1/2)*c-a^(1/2)*e)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*x/(a^(1/2)+b^(1 
/2)*x^2))*2^(1/2)/a^(3/4)/b^(3/4)+1/4*f*ln(b*x^4+a)/b
 

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 296, normalized size of antiderivative = 1.31 \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\frac {-2 \sqrt [4]{a} \sqrt [4]{b} \left (\sqrt {2} \sqrt {b} c+2 \sqrt [4]{a} \sqrt [4]{b} d+\sqrt {2} \sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )+2 \sqrt [4]{a} \sqrt [4]{b} \left (\sqrt {2} \sqrt {b} c-2 \sqrt [4]{a} \sqrt [4]{b} d+\sqrt {2} \sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )-\sqrt {2} \sqrt [4]{b} \left (\sqrt [4]{a} \sqrt {b} c-a^{3/4} e\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )+\sqrt {2} \sqrt [4]{b} \left (\sqrt [4]{a} \sqrt {b} c-a^{3/4} e\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )+2 a f \log \left (a+b x^4\right )}{8 a b} \] Input:

Integrate[(c + d*x + e*x^2 + f*x^3)/(a + b*x^4),x]
 

Output:

(-2*a^(1/4)*b^(1/4)*(Sqrt[2]*Sqrt[b]*c + 2*a^(1/4)*b^(1/4)*d + Sqrt[2]*Sqr 
t[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + 2*a^(1/4)*b^(1/4)*(Sqrt[ 
2]*Sqrt[b]*c - 2*a^(1/4)*b^(1/4)*d + Sqrt[2]*Sqrt[a]*e)*ArcTan[1 + (Sqrt[2 
]*b^(1/4)*x)/a^(1/4)] - Sqrt[2]*b^(1/4)*(a^(1/4)*Sqrt[b]*c - a^(3/4)*e)*Lo 
g[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2] + Sqrt[2]*b^(1/4)*(a^ 
(1/4)*Sqrt[b]*c - a^(3/4)*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqr 
t[b]*x^2] + 2*a*f*Log[a + b*x^4])/(8*a*b)
 

Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.30, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {2415, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx\)

\(\Big \downarrow \) 2415

\(\displaystyle \int \left (\frac {c+e x^2}{a+b x^4}+\frac {x \left (d+f x^2\right )}{a+b x^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (\sqrt {a} e+\sqrt {b} c\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) \left (\sqrt {a} e+\sqrt {b} c\right )}{2 \sqrt {2} a^{3/4} b^{3/4}}-\frac {\left (\sqrt {b} c-\sqrt {a} e\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {\left (\sqrt {b} c-\sqrt {a} e\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} a^{3/4} b^{3/4}}+\frac {d \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 \sqrt {a} \sqrt {b}}+\frac {f \log \left (a+b x^4\right )}{4 b}\)

Input:

Int[(c + d*x + e*x^2 + f*x^3)/(a + b*x^4),x]
 

Output:

(d*ArcTan[(Sqrt[b]*x^2)/Sqrt[a]])/(2*Sqrt[a]*Sqrt[b]) - ((Sqrt[b]*c + Sqrt 
[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4) 
) + ((Sqrt[b]*c + Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*S 
qrt[2]*a^(3/4)*b^(3/4)) - ((Sqrt[b]*c - Sqrt[a]*e)*Log[Sqrt[a] - Sqrt[2]*a 
^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c 
 - Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*S 
qrt[2]*a^(3/4)*b^(3/4)) + (f*Log[a + b*x^4])/(4*b)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2415
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff 
[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1 
}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n/2, 
 0] && Expon[Pq, x] < n
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.11 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.19

method result size
risch \(\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (\textit {\_R}^{3} f +\textit {\_R}^{2} e +d \textit {\_R} +c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 b}\) \(42\)
default \(\frac {c \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}+\frac {d \arctan \left (x^{2} \sqrt {\frac {b}{a}}\right )}{2 \sqrt {a b}}+\frac {e \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}+\frac {f \ln \left (b \,x^{4}+a \right )}{4 b}\) \(240\)

Input:

int((f*x^3+e*x^2+d*x+c)/(b*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

1/4/b*sum((_R^3*f+_R^2*e+_R*d+c)/_R^3*ln(x-_R),_R=RootOf(_Z^4*b+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 5.92 (sec) , antiderivative size = 254687, normalized size of antiderivative = 1126.93 \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\text {Too large to display} \] Input:

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\text {Timed out} \] Input:

integrate((f*x**3+e*x**2+d*x+c)/(b*x**4+a),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.23 \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {3}{4}} b^{\frac {1}{4}} f + b c - \sqrt {a} \sqrt {b} e\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {5}{4}}} + \frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {3}{4}} b^{\frac {1}{4}} f - b c + \sqrt {a} \sqrt {b} e\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{8 \, a^{\frac {3}{4}} b^{\frac {5}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {5}{4}} c + \sqrt {2} a^{\frac {3}{4}} b^{\frac {3}{4}} e - 2 \, \sqrt {a} b d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {5}{4}}} + \frac {{\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {5}{4}} c + \sqrt {2} a^{\frac {3}{4}} b^{\frac {3}{4}} e + 2 \, \sqrt {a} b d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{4 \, a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {5}{4}}} \] Input:

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a),x, algorithm="maxima")
 

Output:

1/8*sqrt(2)*(sqrt(2)*a^(3/4)*b^(1/4)*f + b*c - sqrt(a)*sqrt(b)*e)*log(sqrt 
(b)*x^2 + sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(5/4)) + 1/8*sqr 
t(2)*(sqrt(2)*a^(3/4)*b^(1/4)*f - b*c + sqrt(a)*sqrt(b)*e)*log(sqrt(b)*x^2 
 - sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a))/(a^(3/4)*b^(5/4)) + 1/4*(sqrt(2)*a 
^(1/4)*b^(5/4)*c + sqrt(2)*a^(3/4)*b^(3/4)*e - 2*sqrt(a)*b*d)*arctan(1/2*s 
qrt(2)*(2*sqrt(b)*x + sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(a^( 
3/4)*sqrt(sqrt(a)*sqrt(b))*b^(5/4)) + 1/4*(sqrt(2)*a^(1/4)*b^(5/4)*c + sqr 
t(2)*a^(3/4)*b^(3/4)*e + 2*sqrt(a)*b*d)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x - 
sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(a^(3/4)*sqrt(sqrt(a)*sqrt 
(b))*b^(5/4))
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 286, normalized size of antiderivative = 1.27 \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\frac {f \log \left ({\left | b x^{4} + a \right |}\right )}{4 \, b} - \frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a b} b^{2} d - \left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} - \frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a b} b^{2} d - \left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, a b^{3}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, a b^{3}} \] Input:

integrate((f*x^3+e*x^2+d*x+c)/(b*x^4+a),x, algorithm="giac")
 

Output:

1/4*f*log(abs(b*x^4 + a))/b - 1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*d - (a*b^ 
3)^(1/4)*b^2*c - (a*b^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/b)^ 
(1/4))/(a/b)^(1/4))/(a*b^3) - 1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*d - (a*b^ 
3)^(1/4)*b^2*c - (a*b^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^ 
(1/4))/(a/b)^(1/4))/(a*b^3) + 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c - (a*b^3)^( 
3/4)*e)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^3) - 1/8*sqrt(2) 
*((a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + 
 sqrt(a/b))/(a*b^3)
 

Mupad [B] (verification not implemented)

Time = 7.06 (sec) , antiderivative size = 1952, normalized size of antiderivative = 8.64 \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\text {Too large to display} \] Input:

int((c + d*x + e*x^2 + f*x^3)/(a + b*x^4),x)
 

Output:

symsum(log(b^2*c*d^2 - b^2*c^2*e + b^2*d^3*x - a*b*e^3 - a*b*c*f^2 - 16*ro 
ot(256*a^3*b^4*z^4 - 256*a^3*b^3*f*z^3 + 64*a^2*b^3*c*e*z^2 + 96*a^3*b^2*f 
^2*z^2 + 32*a^2*b^3*d^2*z^2 - 32*a^2*b^2*c*e*f*z - 16*a^2*b^2*d^2*f*z + 16 
*a^2*b^2*d*e^2*z - 16*a*b^3*c^2*d*z - 16*a^3*b*f^3*z - 4*a^2*b*d*e^2*f + 4 
*a^2*b*c*e*f^2 + 4*a*b^2*c^2*d*f - 4*a*b^2*c*d^2*e + 2*a^2*b*d^2*f^2 + 2*a 
*b^2*c^2*e^2 + a^2*b*e^4 + a*b^2*d^4 + a^3*f^4 + b^3*c^4, z, k)^2*a*b^3*c 
- 4*root(256*a^3*b^4*z^4 - 256*a^3*b^3*f*z^3 + 64*a^2*b^3*c*e*z^2 + 96*a^3 
*b^2*f^2*z^2 + 32*a^2*b^3*d^2*z^2 - 32*a^2*b^2*c*e*f*z - 16*a^2*b^2*d^2*f* 
z + 16*a^2*b^2*d*e^2*z - 16*a*b^3*c^2*d*z - 16*a^3*b*f^3*z - 4*a^2*b*d*e^2 
*f + 4*a^2*b*c*e*f^2 + 4*a*b^2*c^2*d*f - 4*a*b^2*c*d^2*e + 2*a^2*b*d^2*f^2 
 + 2*a*b^2*c^2*e^2 + a^2*b*e^4 + a*b^2*d^4 + a^3*f^4 + b^3*c^4, z, k)*b^3* 
c^2*x + b^2*c^2*f*x + 16*root(256*a^3*b^4*z^4 - 256*a^3*b^3*f*z^3 + 64*a^2 
*b^3*c*e*z^2 + 96*a^3*b^2*f^2*z^2 + 32*a^2*b^3*d^2*z^2 - 32*a^2*b^2*c*e*f* 
z - 16*a^2*b^2*d^2*f*z + 16*a^2*b^2*d*e^2*z - 16*a*b^3*c^2*d*z - 16*a^3*b* 
f^3*z - 4*a^2*b*d*e^2*f + 4*a^2*b*c*e*f^2 + 4*a*b^2*c^2*d*f - 4*a*b^2*c*d^ 
2*e + 2*a^2*b*d^2*f^2 + 2*a*b^2*c^2*e^2 + a^2*b*e^4 + a*b^2*d^4 + a^3*f^4 
+ b^3*c^4, z, k)^2*a*b^3*d*x + 4*root(256*a^3*b^4*z^4 - 256*a^3*b^3*f*z^3 
+ 64*a^2*b^3*c*e*z^2 + 96*a^3*b^2*f^2*z^2 + 32*a^2*b^3*d^2*z^2 - 32*a^2*b^ 
2*c*e*f*z - 16*a^2*b^2*d^2*f*z + 16*a^2*b^2*d*e^2*z - 16*a*b^3*c^2*d*z - 1 
6*a^3*b*f^3*z - 4*a^2*b*d*e^2*f + 4*a^2*b*c*e*f^2 + 4*a*b^2*c^2*d*f - 4...
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 402, normalized size of antiderivative = 1.78 \[ \int \frac {c+d x+e x^2+f x^3}{a+b x^4} \, dx=\frac {-2 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e -2 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) c -4 \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d +2 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e +2 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) c -4 \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d +b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) e -b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) e -b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) c +b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) c +2 \,\mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) a f +2 \,\mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) a f}{8 a b} \] Input:

int((f*x^3+e*x^2+d*x+c)/(b*x^4+a),x)
 

Output:

( - 2*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b 
)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*e - 2*b**(3/4)*a**(1/4)*sqrt(2)*atan((b* 
*(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*c - 4* 
sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a 
**(1/4)*sqrt(2)))*d + 2*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)* 
sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*e + 2*b**(3/4)*a**(1/4 
)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4 
)*sqrt(2)))*c - 4*sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt 
(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*d + b**(1/4)*a**(3/4)*sqrt(2)*log( - b 
**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b)*x**2)*e - b**(1/4)*a**(3/4) 
*sqrt(2)*log(b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b)*x**2)*e - b** 
(3/4)*a**(1/4)*sqrt(2)*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt 
(b)*x**2)*c + b**(3/4)*a**(1/4)*sqrt(2)*log(b**(1/4)*a**(1/4)*sqrt(2)*x + 
sqrt(a) + sqrt(b)*x**2)*c + 2*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) 
 + sqrt(b)*x**2)*a*f + 2*log(b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt( 
b)*x**2)*a*f)/(8*a*b)