\(\int \frac {x^3 (c+d x+e x^2+f x^3)}{a+b x^4} \, dx\) [12]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 254 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\frac {d x}{b}+\frac {e x^2}{2 b}+\frac {f x^3}{3 b}-\frac {\sqrt {a} e \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 b^{3/2}}+\frac {\sqrt [4]{a} \left (\sqrt {b} d+\sqrt {a} f\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} b^{7/4}}-\frac {\sqrt [4]{a} \left (\sqrt {b} d+\sqrt {a} f\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} b^{7/4}}-\frac {\sqrt [4]{a} \left (\sqrt {b} d-\sqrt {a} f\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x}{\sqrt {a}+\sqrt {b} x^2}\right )}{2 \sqrt {2} b^{7/4}}+\frac {c \log \left (a+b x^4\right )}{4 b} \] Output:

d*x/b+1/2*e*x^2/b+1/3*f*x^3/b-1/2*a^(1/2)*e*arctan(b^(1/2)*x^2/a^(1/2))/b^ 
(3/2)-1/4*a^(1/4)*(b^(1/2)*d+a^(1/2)*f)*arctan(-1+2^(1/2)*b^(1/4)*x/a^(1/4 
))*2^(1/2)/b^(7/4)-1/4*a^(1/4)*(b^(1/2)*d+a^(1/2)*f)*arctan(1+2^(1/2)*b^(1 
/4)*x/a^(1/4))*2^(1/2)/b^(7/4)-1/4*a^(1/4)*(b^(1/2)*d-a^(1/2)*f)*arctanh(2 
^(1/2)*a^(1/4)*b^(1/4)*x/(a^(1/2)+b^(1/2)*x^2))*2^(1/2)/b^(7/4)+1/4*c*ln(b 
*x^4+a)/b
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 311, normalized size of antiderivative = 1.22 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\frac {24 b^{3/4} d x+12 b^{3/4} e x^2+8 b^{3/4} f x^3+6 \sqrt [4]{a} \left (\sqrt {2} \sqrt {b} d+2 \sqrt [4]{a} \sqrt [4]{b} e+\sqrt {2} \sqrt {a} f\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )-6 \sqrt [4]{a} \left (\sqrt {2} \sqrt {b} d-2 \sqrt [4]{a} \sqrt [4]{b} e+\sqrt {2} \sqrt {a} f\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )-3 \sqrt {2} \left (-\sqrt [4]{a} \sqrt {b} d+a^{3/4} f\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )+3 \sqrt {2} \left (-\sqrt [4]{a} \sqrt {b} d+a^{3/4} f\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {b} x^2\right )+6 b^{3/4} c \log \left (a+b x^4\right )}{24 b^{7/4}} \] Input:

Integrate[(x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4),x]
 

Output:

(24*b^(3/4)*d*x + 12*b^(3/4)*e*x^2 + 8*b^(3/4)*f*x^3 + 6*a^(1/4)*(Sqrt[2]* 
Sqrt[b]*d + 2*a^(1/4)*b^(1/4)*e + Sqrt[2]*Sqrt[a]*f)*ArcTan[1 - (Sqrt[2]*b 
^(1/4)*x)/a^(1/4)] - 6*a^(1/4)*(Sqrt[2]*Sqrt[b]*d - 2*a^(1/4)*b^(1/4)*e + 
Sqrt[2]*Sqrt[a]*f)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)] - 3*Sqrt[2]*(-( 
a^(1/4)*Sqrt[b]*d) + a^(3/4)*f)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + 
Sqrt[b]*x^2] + 3*Sqrt[2]*(-(a^(1/4)*Sqrt[b]*d) + a^(3/4)*f)*Log[Sqrt[a] + 
Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2] + 6*b^(3/4)*c*Log[a + b*x^4])/(24 
*b^(7/4))
 

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.26, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {2370, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx\)

\(\Big \downarrow \) 2370

\(\displaystyle \int \left (\frac {x^3 \left (c+e x^2\right )}{a+b x^4}+\frac {x^4 \left (d+f x^2\right )}{a+b x^4}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt [4]{a} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (\sqrt {a} f+\sqrt {b} d\right )}{2 \sqrt {2} b^{7/4}}-\frac {\sqrt [4]{a} \arctan \left (\frac {\sqrt {2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) \left (\sqrt {a} f+\sqrt {b} d\right )}{2 \sqrt {2} b^{7/4}}-\frac {\sqrt {a} e \arctan \left (\frac {\sqrt {b} x^2}{\sqrt {a}}\right )}{2 b^{3/2}}+\frac {\sqrt [4]{a} \left (\sqrt {b} d-\sqrt {a} f\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} b^{7/4}}-\frac {\sqrt [4]{a} \left (\sqrt {b} d-\sqrt {a} f\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt {a}+\sqrt {b} x^2\right )}{4 \sqrt {2} b^{7/4}}+\frac {c \log \left (a+b x^4\right )}{4 b}+\frac {d x}{b}+\frac {e x^2}{2 b}+\frac {f x^3}{3 b}\)

Input:

Int[(x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4),x]
 

Output:

(d*x)/b + (e*x^2)/(2*b) + (f*x^3)/(3*b) - (Sqrt[a]*e*ArcTan[(Sqrt[b]*x^2)/ 
Sqrt[a]])/(2*b^(3/2)) + (a^(1/4)*(Sqrt[b]*d + Sqrt[a]*f)*ArcTan[1 - (Sqrt[ 
2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*b^(7/4)) - (a^(1/4)*(Sqrt[b]*d + Sqrt[a 
]*f)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*b^(7/4)) + (a^(1/ 
4)*(Sqrt[b]*d - Sqrt[a]*f)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[ 
b]*x^2])/(4*Sqrt[2]*b^(7/4)) - (a^(1/4)*(Sqrt[b]*d - Sqrt[a]*f)*Log[Sqrt[a 
] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(4*Sqrt[2]*b^(7/4)) + (c*Log 
[a + b*x^4])/(4*b)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2370
Int[((Pq_)*((c_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[ 
{v = Sum[(c*x)^(m + ii)*((Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2) 
)/(c^ii*(a + b*x^n))), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{ 
a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] && Expon[Pq, x] < n
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.30

method result size
risch \(\frac {f \,x^{3}}{3 b}+\frac {e \,x^{2}}{2 b}+\frac {d x}{b}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (b \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (\textit {\_R}^{3} b c -\textit {\_R}^{2} a f -\textit {\_R} a e -a d \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 b^{2}}\) \(75\)
default \(\frac {\frac {1}{3} f \,x^{3}+\frac {1}{2} e \,x^{2}+d x}{b}+\frac {-\frac {d \left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8}-\frac {a e \arctan \left (x^{2} \sqrt {\frac {b}{a}}\right )}{2 \sqrt {a b}}-\frac {a f \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}{x^{2}+\left (\frac {a}{b}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{8 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}+\frac {c \ln \left (b \,x^{4}+a \right )}{4}}{b}\) \(261\)

Input:

int(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a),x,method=_RETURNVERBOSE)
 

Output:

1/3*f*x^3/b+1/2*e*x^2/b+d*x/b+1/4/b^2*sum((_R^3*b*c-_R^2*a*f-_R*a*e-a*d)/_ 
R^3*ln(x-_R),_R=RootOf(_Z^4*b+a))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 4.09 (sec) , antiderivative size = 219615, normalized size of antiderivative = 864.63 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\text {Too large to display} \] Input:

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\text {Timed out} \] Input:

integrate(x**3*(f*x**3+e*x**2+d*x+c)/(b*x**4+a),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.20 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\frac {2 \, f x^{3} + 3 \, e x^{2} + 6 \, d x}{6 \, b} + \frac {\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {3}{4}} b^{\frac {5}{4}} c - a b d + a^{\frac {3}{2}} \sqrt {b} f\right )} \log \left (\sqrt {b} x^{2} + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {5}{4}}} + \frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {3}{4}} b^{\frac {5}{4}} c + a b d - a^{\frac {3}{2}} \sqrt {b} f\right )} \log \left (\sqrt {b} x^{2} - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} b^{\frac {5}{4}}} - \frac {2 \, {\left (\sqrt {2} a^{\frac {5}{4}} b^{\frac {5}{4}} d + \sqrt {2} a^{\frac {7}{4}} b^{\frac {3}{4}} f - 2 \, a^{\frac {3}{2}} b e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x + \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {5}{4}}} - \frac {2 \, {\left (\sqrt {2} a^{\frac {5}{4}} b^{\frac {5}{4}} d + \sqrt {2} a^{\frac {7}{4}} b^{\frac {3}{4}} f + 2 \, a^{\frac {3}{2}} b e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {b} x - \sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {b}} b^{\frac {5}{4}}}}{8 \, b} \] Input:

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a),x, algorithm="maxima")
 

Output:

1/6*(2*f*x^3 + 3*e*x^2 + 6*d*x)/b + 1/8*(sqrt(2)*(sqrt(2)*a^(3/4)*b^(5/4)* 
c - a*b*d + a^(3/2)*sqrt(b)*f)*log(sqrt(b)*x^2 + sqrt(2)*a^(1/4)*b^(1/4)*x 
 + sqrt(a))/(a^(3/4)*b^(5/4)) + sqrt(2)*(sqrt(2)*a^(3/4)*b^(5/4)*c + a*b*d 
 - a^(3/2)*sqrt(b)*f)*log(sqrt(b)*x^2 - sqrt(2)*a^(1/4)*b^(1/4)*x + sqrt(a 
))/(a^(3/4)*b^(5/4)) - 2*(sqrt(2)*a^(5/4)*b^(5/4)*d + sqrt(2)*a^(7/4)*b^(3 
/4)*f - 2*a^(3/2)*b*e)*arctan(1/2*sqrt(2)*(2*sqrt(b)*x + sqrt(2)*a^(1/4)*b 
^(1/4))/sqrt(sqrt(a)*sqrt(b)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(b))*b^(5/4)) - 2 
*(sqrt(2)*a^(5/4)*b^(5/4)*d + sqrt(2)*a^(7/4)*b^(3/4)*f + 2*a^(3/2)*b*e)*a 
rctan(1/2*sqrt(2)*(2*sqrt(b)*x - sqrt(2)*a^(1/4)*b^(1/4))/sqrt(sqrt(a)*sqr 
t(b)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(b))*b^(5/4)))/b
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 305, normalized size of antiderivative = 1.20 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\frac {c \log \left ({\left | b x^{4} + a \right |}\right )}{4 \, b} + \frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a b} b^{2} e - \left (a b^{3}\right )^{\frac {1}{4}} b^{2} d - \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, b^{4}} + \frac {\sqrt {2} {\left (\sqrt {2} \sqrt {a b} b^{2} e - \left (a b^{3}\right )^{\frac {1}{4}} b^{2} d - \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{4 \, b^{4}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} d - \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, b^{4}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {1}{4}} b^{2} d - \left (a b^{3}\right )^{\frac {3}{4}} f\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{b}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{b}}\right )}{8 \, b^{4}} + \frac {2 \, b^{2} f x^{3} + 3 \, b^{2} e x^{2} + 6 \, b^{2} d x}{6 \, b^{3}} \] Input:

integrate(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a),x, algorithm="giac")
 

Output:

1/4*c*log(abs(b*x^4 + a))/b + 1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*e - (a*b^ 
3)^(1/4)*b^2*d - (a*b^3)^(3/4)*f)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/b)^ 
(1/4))/(a/b)^(1/4))/b^4 + 1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*e - (a*b^3)^( 
1/4)*b^2*d - (a*b^3)^(3/4)*f)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4 
))/(a/b)^(1/4))/b^4 - 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*d - (a*b^3)^(3/4)*f)* 
log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/b^4 + 1/8*sqrt(2)*((a*b^3)^(1 
/4)*b^2*d - (a*b^3)^(3/4)*f)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/ 
b^4 + 1/6*(2*b^2*f*x^3 + 3*b^2*e*x^2 + 6*b^2*d*x)/b^3
 

Mupad [B] (verification not implemented)

Time = 6.44 (sec) , antiderivative size = 838, normalized size of antiderivative = 3.30 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\left (\sum _{k=1}^4\ln \left (\frac {a^4\,f^3+2\,a^3\,b\,c\,e\,f+a^3\,b\,d^2\,f-a^3\,b\,d\,e^2+a^2\,b^2\,c^2\,d}{b^2}+\mathrm {root}\left (256\,b^7\,z^4-256\,b^6\,c\,z^3+64\,a\,b^4\,d\,f\,z^2+32\,a\,b^4\,e^2\,z^2+96\,b^5\,c^2\,z^2-32\,a\,b^3\,c\,d\,f\,z-16\,a^2\,b^2\,e\,f^2\,z+16\,a\,b^3\,d^2\,e\,z-16\,a\,b^3\,c\,e^2\,z-16\,b^4\,c^3\,z-4\,a^2\,b\,d\,e^2\,f+4\,a^2\,b\,c\,e\,f^2+4\,a\,b^2\,c^2\,d\,f-4\,a\,b^2\,c\,d^2\,e+2\,a^2\,b\,d^2\,f^2+2\,a\,b^2\,c^2\,e^2+a^2\,b\,e^4+a\,b^2\,d^4+a^3\,f^4+b^3\,c^4,z,k\right )\,\left (\mathrm {root}\left (256\,b^7\,z^4-256\,b^6\,c\,z^3+64\,a\,b^4\,d\,f\,z^2+32\,a\,b^4\,e^2\,z^2+96\,b^5\,c^2\,z^2-32\,a\,b^3\,c\,d\,f\,z-16\,a^2\,b^2\,e\,f^2\,z+16\,a\,b^3\,d^2\,e\,z-16\,a\,b^3\,c\,e^2\,z-16\,b^4\,c^3\,z-4\,a^2\,b\,d\,e^2\,f+4\,a^2\,b\,c\,e\,f^2+4\,a\,b^2\,c^2\,d\,f-4\,a\,b^2\,c\,d^2\,e+2\,a^2\,b\,d^2\,f^2+2\,a\,b^2\,c^2\,e^2+a^2\,b\,e^4+a\,b^2\,d^4+a^3\,f^4+b^3\,c^4,z,k\right )\,\left (16\,a^2\,b^2\,d-16\,a^2\,b^2\,e\,x\right )-\frac {8\,e\,f\,a^3\,b^2+8\,c\,d\,a^2\,b^3}{b^2}+\frac {x\,\left (4\,a^3\,b\,f^2-4\,a^2\,b^2\,d^2+8\,c\,e\,a^2\,b^2\right )}{b}\right )-\frac {x\,\left (a^3\,c\,f^2-2\,a^3\,d\,e\,f+a^3\,e^3+b\,a^2\,c^2\,e-b\,a^2\,c\,d^2\right )}{b}\right )\,\mathrm {root}\left (256\,b^7\,z^4-256\,b^6\,c\,z^3+64\,a\,b^4\,d\,f\,z^2+32\,a\,b^4\,e^2\,z^2+96\,b^5\,c^2\,z^2-32\,a\,b^3\,c\,d\,f\,z-16\,a^2\,b^2\,e\,f^2\,z+16\,a\,b^3\,d^2\,e\,z-16\,a\,b^3\,c\,e^2\,z-16\,b^4\,c^3\,z-4\,a^2\,b\,d\,e^2\,f+4\,a^2\,b\,c\,e\,f^2+4\,a\,b^2\,c^2\,d\,f-4\,a\,b^2\,c\,d^2\,e+2\,a^2\,b\,d^2\,f^2+2\,a\,b^2\,c^2\,e^2+a^2\,b\,e^4+a\,b^2\,d^4+a^3\,f^4+b^3\,c^4,z,k\right )\right )+\frac {e\,x^2}{2\,b}+\frac {f\,x^3}{3\,b}+\frac {d\,x}{b} \] Input:

int((x^3*(c + d*x + e*x^2 + f*x^3))/(a + b*x^4),x)
 

Output:

symsum(log((a^4*f^3 + a^2*b^2*c^2*d - a^3*b*d*e^2 + a^3*b*d^2*f + 2*a^3*b* 
c*e*f)/b^2 + root(256*b^7*z^4 - 256*b^6*c*z^3 + 64*a*b^4*d*f*z^2 + 32*a*b^ 
4*e^2*z^2 + 96*b^5*c^2*z^2 - 32*a*b^3*c*d*f*z - 16*a^2*b^2*e*f^2*z + 16*a* 
b^3*d^2*e*z - 16*a*b^3*c*e^2*z - 16*b^4*c^3*z - 4*a^2*b*d*e^2*f + 4*a^2*b* 
c*e*f^2 + 4*a*b^2*c^2*d*f - 4*a*b^2*c*d^2*e + 2*a^2*b*d^2*f^2 + 2*a*b^2*c^ 
2*e^2 + a^2*b*e^4 + a*b^2*d^4 + a^3*f^4 + b^3*c^4, z, k)*(root(256*b^7*z^4 
 - 256*b^6*c*z^3 + 64*a*b^4*d*f*z^2 + 32*a*b^4*e^2*z^2 + 96*b^5*c^2*z^2 - 
32*a*b^3*c*d*f*z - 16*a^2*b^2*e*f^2*z + 16*a*b^3*d^2*e*z - 16*a*b^3*c*e^2* 
z - 16*b^4*c^3*z - 4*a^2*b*d*e^2*f + 4*a^2*b*c*e*f^2 + 4*a*b^2*c^2*d*f - 4 
*a*b^2*c*d^2*e + 2*a^2*b*d^2*f^2 + 2*a*b^2*c^2*e^2 + a^2*b*e^4 + a*b^2*d^4 
 + a^3*f^4 + b^3*c^4, z, k)*(16*a^2*b^2*d - 16*a^2*b^2*e*x) - (8*a^2*b^3*c 
*d + 8*a^3*b^2*e*f)/b^2 + (x*(4*a^3*b*f^2 - 4*a^2*b^2*d^2 + 8*a^2*b^2*c*e) 
)/b) - (x*(a^3*e^3 + a^3*c*f^2 - 2*a^3*d*e*f - a^2*b*c*d^2 + a^2*b*c^2*e)) 
/b)*root(256*b^7*z^4 - 256*b^6*c*z^3 + 64*a*b^4*d*f*z^2 + 32*a*b^4*e^2*z^2 
 + 96*b^5*c^2*z^2 - 32*a*b^3*c*d*f*z - 16*a^2*b^2*e*f^2*z + 16*a*b^3*d^2*e 
*z - 16*a*b^3*c*e^2*z - 16*b^4*c^3*z - 4*a^2*b*d*e^2*f + 4*a^2*b*c*e*f^2 + 
 4*a*b^2*c^2*d*f - 4*a*b^2*c*d^2*e + 2*a^2*b*d^2*f^2 + 2*a*b^2*c^2*e^2 + a 
^2*b*e^4 + a*b^2*d^4 + a^3*f^4 + b^3*c^4, z, k), k, 1, 4) + (e*x^2)/(2*b) 
+ (f*x^3)/(3*b) + (d*x)/b
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 420, normalized size of antiderivative = 1.65 \[ \int \frac {x^3 \left (c+d x+e x^2+f x^3\right )}{a+b x^4} \, dx=\frac {6 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) f +6 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d +12 \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e -6 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) f -6 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) d +12 \sqrt {b}\, \sqrt {a}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {b}\, x}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right ) e -3 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) f +3 b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) f +3 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) d -3 b^{\frac {3}{4}} a^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) d +6 \,\mathrm {log}\left (-b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) b c +6 \,\mathrm {log}\left (b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}\, x +\sqrt {a}+\sqrt {b}\, x^{2}\right ) b c +24 b d x +12 b e \,x^{2}+8 b f \,x^{3}}{24 b^{2}} \] Input:

int(x^3*(f*x^3+e*x^2+d*x+c)/(b*x^4+a),x)
 

Output:

(6*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x 
)/(b**(1/4)*a**(1/4)*sqrt(2)))*f + 6*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1 
/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*d + 12*sq 
rt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(b)*x)/(b**(1/4)*a** 
(1/4)*sqrt(2)))*e - 6*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sq 
rt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*f - 6*b**(3/4)*a**(1/4)* 
sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(b)*x)/(b**(1/4)*a**(1/4)* 
sqrt(2)))*d + 12*sqrt(b)*sqrt(a)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt( 
b)*x)/(b**(1/4)*a**(1/4)*sqrt(2)))*e - 3*b**(1/4)*a**(3/4)*sqrt(2)*log( - 
b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b)*x**2)*f + 3*b**(1/4)*a**(3 
/4)*sqrt(2)*log(b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + sqrt(b)*x**2)*f + 
3*b**(3/4)*a**(1/4)*sqrt(2)*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) + 
 sqrt(b)*x**2)*d - 3*b**(3/4)*a**(1/4)*sqrt(2)*log(b**(1/4)*a**(1/4)*sqrt( 
2)*x + sqrt(a) + sqrt(b)*x**2)*d + 6*log( - b**(1/4)*a**(1/4)*sqrt(2)*x + 
sqrt(a) + sqrt(b)*x**2)*b*c + 6*log(b**(1/4)*a**(1/4)*sqrt(2)*x + sqrt(a) 
+ sqrt(b)*x**2)*b*c + 24*b*d*x + 12*b*e*x**2 + 8*b*f*x**3)/(24*b**2)