\(\int (c+d x)^q (a x^n+b x^{1+n})^p \, dx\) [273]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 86 \[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\frac {x \left (1+\frac {b x}{a}\right )^{-p} (c+d x)^q \left (1+\frac {d x}{c}\right )^{-q} \left (a x^n+b x^{1+n}\right )^p \operatorname {AppellF1}\left (1+n p,-p,-q,2+n p,-\frac {b x}{a},-\frac {d x}{c}\right )}{1+n p} \] Output:

x*(d*x+c)^q*(a*x^n+b*x^(1+n))^p*AppellF1(n*p+1,-p,-q,n*p+2,-b*x/a,-d*x/c)/ 
(n*p+1)/((1+b*x/a)^p)/((1+d*x/c)^q)
 

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.98 \[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\frac {x \left (\frac {a+b x}{a}\right )^{-p} \left (x^n (a+b x)\right )^p (c+d x)^q \left (\frac {c+d x}{c}\right )^{-q} \operatorname {AppellF1}\left (1+n p,-p,-q,2+n p,-\frac {b x}{a},-\frac {d x}{c}\right )}{1+n p} \] Input:

Integrate[(c + d*x)^q*(a*x^n + b*x^(1 + n))^p,x]
 

Output:

(x*(x^n*(a + b*x))^p*(c + d*x)^q*AppellF1[1 + n*p, -p, -q, 2 + n*p, -((b*x 
)/a), -((d*x)/c)])/((1 + n*p)*((a + b*x)/a)^p*((c + d*x)/c)^q)
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2468, 152, 152, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^q \left (a x^n+b x^{n+1}\right )^p \, dx\)

\(\Big \downarrow \) 2468

\(\displaystyle x^{-n p} (a+b x)^{-p} \left (a x^n+b x^{n+1}\right )^p \int x^{n p} (a+b x)^p (c+d x)^qdx\)

\(\Big \downarrow \) 152

\(\displaystyle x^{-n p} \left (\frac {b x}{a}+1\right )^{-p} \left (a x^n+b x^{n+1}\right )^p \int x^{n p} \left (\frac {b x}{a}+1\right )^p (c+d x)^qdx\)

\(\Big \downarrow \) 152

\(\displaystyle x^{-n p} \left (\frac {b x}{a}+1\right )^{-p} (c+d x)^q \left (\frac {d x}{c}+1\right )^{-q} \left (a x^n+b x^{n+1}\right )^p \int x^{n p} \left (\frac {b x}{a}+1\right )^p \left (\frac {d x}{c}+1\right )^qdx\)

\(\Big \downarrow \) 150

\(\displaystyle \frac {x \left (\frac {b x}{a}+1\right )^{-p} (c+d x)^q \left (\frac {d x}{c}+1\right )^{-q} \left (a x^n+b x^{n+1}\right )^p \operatorname {AppellF1}\left (n p+1,-p,-q,n p+2,-\frac {b x}{a},-\frac {d x}{c}\right )}{n p+1}\)

Input:

Int[(c + d*x)^q*(a*x^n + b*x^(1 + n))^p,x]
 

Output:

(x*(c + d*x)^q*(a*x^n + b*x^(1 + n))^p*AppellF1[1 + n*p, -p, -q, 2 + n*p, 
-((b*x)/a), -((d*x)/c)])/((1 + n*p)*(1 + (b*x)/a)^p*(1 + (d*x)/c)^q)
 

Defintions of rubi rules used

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 152
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^IntPart[n]*((c + d*x)^FracPart[n]/(1 + d*(x/c))^FracPart[n]) 
Int[(b*x)^m*(1 + d*(x/c))^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d, e, f, m, 
 n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !GtQ[c, 0]
 

rule 2468
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_), x_Symbol] :> Simp[(a 
*x^r + b*x^s)^p/(x^(p*r)*(a + b*x^(s - r))^p)   Int[x^(p*r)*(a + b*x^(s - r 
))^p*Fx, x], x] /; FreeQ[{a, b, p, r, s}, x] &&  !IntegerQ[p] && PosQ[s - r 
] &&  !(EqQ[p, 1] && EqQ[Fx, 1])
 
Maple [F]

\[\int \left (d x +c \right )^{q} \left (a \,x^{n}+b \,x^{1+n}\right )^{p}d x\]

Input:

int((d*x+c)^q*(a*x^n+b*x^(1+n))^p,x)
 

Output:

int((d*x+c)^q*(a*x^n+b*x^(1+n))^p,x)
 

Fricas [F]

\[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\int { {\left (b x^{n + 1} + a x^{n}\right )}^{p} {\left (d x + c\right )}^{q} \,d x } \] Input:

integrate((d*x+c)^q*(a*x^n+b*x^(1+n))^p,x, algorithm="fricas")
 

Output:

integral((b*x^(n + 1) + a*x^n)^p*(d*x + c)^q, x)
 

Sympy [F(-1)]

Timed out. \[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\text {Timed out} \] Input:

integrate((d*x+c)**q*(a*x**n+b*x**(1+n))**p,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\int { {\left (b x^{n + 1} + a x^{n}\right )}^{p} {\left (d x + c\right )}^{q} \,d x } \] Input:

integrate((d*x+c)^q*(a*x^n+b*x^(1+n))^p,x, algorithm="maxima")
 

Output:

integrate((b*x^(n + 1) + a*x^n)^p*(d*x + c)^q, x)
 

Giac [F]

\[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\int { {\left (b x^{n + 1} + a x^{n}\right )}^{p} {\left (d x + c\right )}^{q} \,d x } \] Input:

integrate((d*x+c)^q*(a*x^n+b*x^(1+n))^p,x, algorithm="giac")
 

Output:

integrate((b*x^(n + 1) + a*x^n)^p*(d*x + c)^q, x)
 

Mupad [F(-1)]

Timed out. \[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\int {\left (a\,x^n+b\,x^{n+1}\right )}^p\,{\left (c+d\,x\right )}^q \,d x \] Input:

int((a*x^n + b*x^(n + 1))^p*(c + d*x)^q,x)
 

Output:

int((a*x^n + b*x^(n + 1))^p*(c + d*x)^q, x)
 

Reduce [F]

\[ \int (c+d x)^q \left (a x^n+b x^{1+n}\right )^p \, dx=\text {too large to display} \] Input:

int((d*x+c)^q*(a*x^n+b*x^(1+n))^p,x)
 

Output:

((c + d*x)**q*(x**n*a + x**n*b*x)**p*a*c*p + (c + d*x)**q*(x**n*a + x**n*b 
*x)**p*a*c*q + (c + d*x)**q*(x**n*a + x**n*b*x)**p*a*d*n*p*x + (c + d*x)** 
q*(x**n*a + x**n*b*x)**p*a*d*q*x + (c + d*x)**q*(x**n*a + x**n*b*x)**p*b*c 
*n*p*x + (c + d*x)**q*(x**n*a + x**n*b*x)**p*b*c*p*x + int(((c + d*x)**q*( 
x**n*a + x**n*b*x)**p*x)/(a**2*c*d*n**2*p**2 + a**2*c*d*n*p**2 + 2*a**2*c* 
d*n*p*q + a**2*c*d*n*p + a**2*c*d*p*q + a**2*c*d*q**2 + a**2*c*d*q + a**2* 
d**2*n**2*p**2*x + a**2*d**2*n*p**2*x + 2*a**2*d**2*n*p*q*x + a**2*d**2*n* 
p*x + a**2*d**2*p*q*x + a**2*d**2*q**2*x + a**2*d**2*q*x + a*b*c**2*n**2*p 
**2 + 2*a*b*c**2*n*p**2 + a*b*c**2*n*p*q + a*b*c**2*n*p + a*b*c**2*p**2 + 
a*b*c**2*p*q + a*b*c**2*p + 2*a*b*c*d*n**2*p**2*x + 3*a*b*c*d*n*p**2*x + 3 
*a*b*c*d*n*p*q*x + 2*a*b*c*d*n*p*x + a*b*c*d*p**2*x + 2*a*b*c*d*p*q*x + a* 
b*c*d*p*x + a*b*c*d*q**2*x + a*b*c*d*q*x + a*b*d**2*n**2*p**2*x**2 + a*b*d 
**2*n*p**2*x**2 + 2*a*b*d**2*n*p*q*x**2 + a*b*d**2*n*p*x**2 + a*b*d**2*p*q 
*x**2 + a*b*d**2*q**2*x**2 + a*b*d**2*q*x**2 + b**2*c**2*n**2*p**2*x + 2*b 
**2*c**2*n*p**2*x + b**2*c**2*n*p*q*x + b**2*c**2*n*p*x + b**2*c**2*p**2*x 
 + b**2*c**2*p*q*x + b**2*c**2*p*x + b**2*c*d*n**2*p**2*x**2 + 2*b**2*c*d* 
n*p**2*x**2 + b**2*c*d*n*p*q*x**2 + b**2*c*d*n*p*x**2 + b**2*c*d*p**2*x**2 
 + b**2*c*d*p*q*x**2 + b**2*c*d*p*x**2),x)*a**3*d**3*n**3*p**4 + int(((c + 
 d*x)**q*(x**n*a + x**n*b*x)**p*x)/(a**2*c*d*n**2*p**2 + a**2*c*d*n*p**2 + 
 2*a**2*c*d*n*p*q + a**2*c*d*n*p + a**2*c*d*p*q + a**2*c*d*q**2 + a**2*...