\(\int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx\) [271]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 514 \[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=-\frac {8 a x \left (a+b x^3\right )}{7 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {a x^2+b x^5}}+\frac {2 x \sqrt {a x^2+b x^5}}{7 b}+\frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^{4/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{7 b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}-\frac {8 \sqrt {2} a^{4/3} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{7 \sqrt [4]{3} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}} \] Output:

-8/7*a*x*(b*x^3+a)/b^(5/3)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)/(b*x^5+a*x^2)^( 
1/2)+2/7*x*(b*x^5+a*x^2)^(1/2)/b+4/7*3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*a^( 
4/3)*x*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^ 
(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*EllipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)* 
x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)/b^(5/3)/(a^(1/3)*(a^(1/3 
)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^5+a*x^2)^(1/2)- 
8/21*2^(1/2)*a^(4/3)*x*(a^(1/3)+b^(1/3)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^( 
2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*EllipticF(((1-3^(1/2))* 
a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/ 
b^(5/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1 
/2)/(b*x^5+a*x^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.13 \[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=\frac {2 x^3 \left (a+b x^3-a \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-\frac {b x^3}{a}\right )\right )}{7 b \sqrt {x^2 \left (a+b x^3\right )}} \] Input:

Integrate[x^5/Sqrt[a*x^2 + b*x^5],x]
 

Output:

(2*x^3*(a + b*x^3 - a*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/2, 2/3, 5/3, 
 -((b*x^3)/a)]))/(7*b*Sqrt[x^2*(a + b*x^3)])
 

Rubi [A] (warning: unable to verify)

Time = 0.93 (sec) , antiderivative size = 543, normalized size of antiderivative = 1.06, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {1930, 1938, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx\)

\(\Big \downarrow \) 1930

\(\displaystyle \frac {2 x \sqrt {a x^2+b x^5}}{7 b}-\frac {4 a \int \frac {x^2}{\sqrt {b x^5+a x^2}}dx}{7 b}\)

\(\Big \downarrow \) 1938

\(\displaystyle \frac {2 x \sqrt {a x^2+b x^5}}{7 b}-\frac {4 a x \sqrt {a+b x^3} \int \frac {x}{\sqrt {b x^3+a}}dx}{7 b \sqrt {a x^2+b x^5}}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {2 x \sqrt {a x^2+b x^5}}{7 b}-\frac {4 a x \sqrt {a+b x^3} \left (\frac {\int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}\right )}{7 b \sqrt {a x^2+b x^5}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2 x \sqrt {a x^2+b x^5}}{7 b}-\frac {4 a x \sqrt {a+b x^3} \left (\frac {\int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{7 b \sqrt {a x^2+b x^5}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {2 x \sqrt {a x^2+b x^5}}{7 b}-\frac {4 a x \sqrt {a+b x^3} \left (\frac {\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{7 b \sqrt {a x^2+b x^5}}\)

Input:

Int[x^5/Sqrt[a*x^2 + b*x^5],x]
 

Output:

(2*x*Sqrt[a*x^2 + b*x^5])/(7*b) - (4*a*x*Sqrt[a + b*x^3]*(((2*Sqrt[a + b*x 
^3])/(b^(1/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)) - (3^(1/4)*Sqrt[2 - Sqr 
t[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^ 
(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - S 
qrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4* 
Sqrt[3]])/(b^(1/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^( 
1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3]))/b^(1/3) - (2*(1 - Sqrt[3])*Sqrt[2 + 
 Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x 
+ b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 
 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 
- 4*Sqrt[3]])/(3^(1/4)*b^(2/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + 
Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])))/(7*b*Sqrt[a*x^2 + b*x^ 
5])
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 1930
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a*x^j + b*x^n)^(p + 1)/(b*(m + n*p 
+ 1))), x] - Simp[a*c^(n - j)*((m + j*p - n + j + 1)/(b*(m + n*p + 1)))   I 
nt[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, 
x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && Gt 
Q[m + j*p - n + j + 1, 0] && NeQ[m + n*p + 1, 0]
 

rule 1938
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^IntPart[m]*(c*x)^FracPart[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(F 
racPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]))   Int[x^(m + j* 
p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !Inte 
gerQ[p] && NeQ[n, j] && PosQ[n - j]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.05

method result size
pseudoelliptic \(-\frac {2 \sqrt {b \,x^{3}+a}\, \left (-b \,x^{3}+2 a \right )}{9 b^{2}}\) \(25\)
risch \(\frac {2 x^{3} \left (b \,x^{3}+a \right )}{7 b \sqrt {x^{2} \left (b \,x^{3}+a \right )}}+\frac {8 i a \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (\left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )+\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}} \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{b}\right ) x}{21 b^{2} \sqrt {x^{2} \left (b \,x^{3}+a \right )}}\) \(470\)
default \(-\frac {2 x \left (3 i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {2 \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}{\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (i \sqrt {3}-3\right )}}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+2 b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{6}, \sqrt {2}\, \sqrt {\frac {i \sqrt {3}}{i \sqrt {3}-3}}\right ) \sqrt {3}\, a -2 i \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {2 \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}{\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (i \sqrt {3}-3\right )}}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+2 b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{6}, \sqrt {2}\, \sqrt {\frac {i \sqrt {3}}{i \sqrt {3}-3}}\right ) \sqrt {3}\, a -3 b^{3} x^{5}+3 \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {2 \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}{\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (i \sqrt {3}-3\right )}}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+2 b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{6}, \sqrt {2}\, \sqrt {\frac {i \sqrt {3}}{i \sqrt {3}-3}}\right ) a -3 a \,b^{2} x^{2}\right )}{21 \sqrt {b \,x^{5}+a \,x^{2}}\, b^{3}}\) \(676\)

Input:

int(x^5/(b*x^5+a*x^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/9*(b*x^3+a)^(1/2)*(-b*x^3+2*a)/b^2
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.09 \[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=\frac {2 \, {\left (\sqrt {b x^{5} + a x^{2}} b x + 4 \, a \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right )\right )}}{7 \, b^{2}} \] Input:

integrate(x^5/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")
 

Output:

2/7*(sqrt(b*x^5 + a*x^2)*b*x + 4*a*sqrt(b)*weierstrassZeta(0, -4*a/b, weie 
rstrassPInverse(0, -4*a/b, x)))/b^2
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=\int \frac {x^{5}}{\sqrt {x^{2} \left (a + b x^{3}\right )}}\, dx \] Input:

integrate(x**5/(b*x**5+a*x**2)**(1/2),x)
 

Output:

Integral(x**5/sqrt(x**2*(a + b*x**3)), x)
 

Maxima [F]

\[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=\int { \frac {x^{5}}{\sqrt {b x^{5} + a x^{2}}} \,d x } \] Input:

integrate(x^5/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^5/sqrt(b*x^5 + a*x^2), x)
 

Giac [F]

\[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=\int { \frac {x^{5}}{\sqrt {b x^{5} + a x^{2}}} \,d x } \] Input:

integrate(x^5/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^5/sqrt(b*x^5 + a*x^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=\int \frac {x^5}{\sqrt {b\,x^5+a\,x^2}} \,d x \] Input:

int(x^5/(a*x^2 + b*x^5)^(1/2),x)
 

Output:

int(x^5/(a*x^2 + b*x^5)^(1/2), x)
 

Reduce [F]

\[ \int \frac {x^5}{\sqrt {a x^2+b x^5}} \, dx=\frac {\frac {2 \sqrt {b \,x^{3}+a}\, x^{2}}{7}-\frac {4 \left (\int \frac {\sqrt {b \,x^{3}+a}\, x}{b \,x^{3}+a}d x \right ) a}{7}}{b} \] Input:

int(x^5/(b*x^5+a*x^2)^(1/2),x)
 

Output:

(2*(sqrt(a + b*x**3)*x**2 - 2*int((sqrt(a + b*x**3)*x)/(a + b*x**3),x)*a)) 
/(7*b)