\(\int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx\) [272]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 484 \[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=\frac {2 x \left (a+b x^3\right )}{b^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {a x^2+b x^5}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}}+\frac {2 \sqrt {2} \sqrt [3]{a} x \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a x^2+b x^5}} \] Output:

2*x*(b*x^3+a)/b^(2/3)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)/(b*x^5+a*x^2)^(1/2)- 
3^(1/4)*(1/2*6^(1/2)-1/2*2^(1/2))*a^(1/3)*x*(a^(1/3)+b^(1/3)*x)*((a^(2/3)- 
a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)*El 
lipticE(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x),I* 
3^(1/2)+2*I)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^( 
1/3)*x)^2)^(1/2)/(b*x^5+a*x^2)^(1/2)+2/3*2^(1/2)*a^(1/3)*x*(a^(1/3)+b^(1/3 
)*x)*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3) 
*x)^2)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3 
)+b^(1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/b^(2/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/( 
(1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^5+a*x^2)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.11 \[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=\frac {x^3 \sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},-\frac {b x^3}{a}\right )}{2 \sqrt {x^2 \left (a+b x^3\right )}} \] Input:

Integrate[x^2/Sqrt[a*x^2 + b*x^5],x]
 

Output:

(x^3*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/2, 2/3, 5/3, -((b*x^3)/a)])/( 
2*Sqrt[x^2*(a + b*x^3)])
 

Rubi [A] (warning: unable to verify)

Time = 0.88 (sec) , antiderivative size = 512, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.211, Rules used = {1938, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx\)

\(\Big \downarrow \) 1938

\(\displaystyle \frac {x \sqrt {a+b x^3} \int \frac {x}{\sqrt {b x^3+a}}dx}{\sqrt {a x^2+b x^5}}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {x \sqrt {a+b x^3} \left (\frac {\int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}\right )}{\sqrt {a x^2+b x^5}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {x \sqrt {a+b x^3} \left (\frac {\int \frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt {b x^3+a}}dx}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt {a x^2+b x^5}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {x \sqrt {a+b x^3} \left (\frac {\frac {2 \sqrt {a+b x^3}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\right )}{\sqrt {a x^2+b x^5}}\)

Input:

Int[x^2/Sqrt[a*x^2 + b*x^5],x]
 

Output:

(x*Sqrt[a + b*x^3]*(((2*Sqrt[a + b*x^3])/(b^(1/3)*((1 + Sqrt[3])*a^(1/3) + 
 b^(1/3)*x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x)*Sq 
rt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^ 
(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqr 
t[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqrt[(a^(1/3)*(a^(1 
/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3])) 
/b^(1/3) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*a^(1/3)*(a^(1/3) + b^(1/3)*x 
)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) 
+ b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + 
 Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*b^(2/3)*Sqrt[(a 
^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[ 
a + b*x^3])))/Sqrt[a*x^2 + b*x^5]
 

Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 1938
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^IntPart[m]*(c*x)^FracPart[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(F 
racPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]))   Int[x^(m + j* 
p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !Inte 
gerQ[p] && NeQ[n, j] && PosQ[n - j]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 15, normalized size of antiderivative = 0.03

method result size
pseudoelliptic \(\frac {2 \sqrt {b \,x^{3}+a}}{3 b}\) \(15\)
default \(-\frac {i x \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {2}{3}} \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {2 \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}{\left (-a \,b^{2}\right )^{\frac {1}{3}} \left (i \sqrt {3}-3\right )}}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+2 b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (i \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{6}, \sqrt {2}\, \sqrt {\frac {i \sqrt {3}}{i \sqrt {3}-3}}\right ) \sqrt {3}-3 \operatorname {EllipticE}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{6}, \sqrt {2}\, \sqrt {\frac {i \sqrt {3}}{i \sqrt {3}-3}}\right )+2 \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {2}\, \sqrt {-\frac {i \left (i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-2 b x -\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \sqrt {3}}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{6}, \sqrt {2}\, \sqrt {\frac {i \sqrt {3}}{i \sqrt {3}-3}}\right )\right )}{6 \sqrt {b \,x^{5}+a \,x^{2}}\, b^{2}}\) \(394\)

Input:

int(x^2/(b*x^5+a*x^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/3/b*(b*x^3+a)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.05 \[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=-\frac {2 \, {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right )}{\sqrt {b}} \] Input:

integrate(x^2/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")
 

Output:

-2*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/b, x))/sqrt(b)
 

Sympy [F]

\[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=\int \frac {x^{2}}{\sqrt {x^{2} \left (a + b x^{3}\right )}}\, dx \] Input:

integrate(x**2/(b*x**5+a*x**2)**(1/2),x)
 

Output:

Integral(x**2/sqrt(x**2*(a + b*x**3)), x)
 

Maxima [F]

\[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=\int { \frac {x^{2}}{\sqrt {b x^{5} + a x^{2}}} \,d x } \] Input:

integrate(x^2/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(x^2/sqrt(b*x^5 + a*x^2), x)
 

Giac [F]

\[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=\int { \frac {x^{2}}{\sqrt {b x^{5} + a x^{2}}} \,d x } \] Input:

integrate(x^2/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(x^2/sqrt(b*x^5 + a*x^2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=\int \frac {x^2}{\sqrt {b\,x^5+a\,x^2}} \,d x \] Input:

int(x^2/(a*x^2 + b*x^5)^(1/2),x)
 

Output:

int(x^2/(a*x^2 + b*x^5)^(1/2), x)
 

Reduce [F]

\[ \int \frac {x^2}{\sqrt {a x^2+b x^5}} \, dx=\int \frac {\sqrt {b \,x^{3}+a}\, x}{b \,x^{3}+a}d x \] Input:

int(x^2/(b*x^5+a*x^2)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int((sqrt(a + b*x**3)*x)/(a + b*x**3),x)