\(\int \frac {1}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [271]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 132 \[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 \left (c d^2+a e^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {16 c d e \left (c d^2+a e^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^4 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \] Output:

1/3*(-4*c*d*e*x-2*a*e^2-2*c*d^2)/(-a*e^2+c*d^2)^2/(a*d*e+(a*e^2+c*d^2)*x+c 
*d*e*x^2)^(3/2)+16/3*c*d*e*(2*c*d*e*x+a*e^2+c*d^2)/(-a*e^2+c*d^2)^4/(a*d*e 
+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {-2 a^3 e^6+6 a^2 c d e^4 (3 d+2 e x)+6 a c^2 d^2 e^2 \left (3 d^2+12 d e x+8 e^2 x^2\right )+2 c^3 d^3 \left (-d^3+6 d^2 e x+24 d e^2 x^2+16 e^3 x^3\right )}{3 \left (c d^2-a e^2\right )^4 ((a e+c d x) (d+e x))^{3/2}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(-5/2),x]
 

Output:

(-2*a^3*e^6 + 6*a^2*c*d*e^4*(3*d + 2*e*x) + 6*a*c^2*d^2*e^2*(3*d^2 + 12*d* 
e*x + 8*e^2*x^2) + 2*c^3*d^3*(-d^3 + 6*d^2*e*x + 24*d*e^2*x^2 + 16*e^3*x^3 
))/(3*(c*d^2 - a*e^2)^4*((a*e + c*d*x)*(d + e*x))^(3/2))
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {1089, 1088}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1089

\(\displaystyle -\frac {8 c d e \int \frac {1}{\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}dx}{3 \left (c d^2-a e^2\right )^2}-\frac {2 \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1088

\(\displaystyle \frac {16 c d e \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^4 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(-5/2),x]
 

Output:

(-2*(c*d^2 + a*e^2 + 2*c*d*e*x))/(3*(c*d^2 - a*e^2)^2*(a*d*e + (c*d^2 + a* 
e^2)*x + c*d*e*x^2)^(3/2)) + (16*c*d*e*(c*d^2 + a*e^2 + 2*c*d*e*x))/(3*(c* 
d^2 - a*e^2)^4*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])
 

Defintions of rubi rules used

rule 1088
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 
2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c}, x] && 
 NeQ[b^2 - 4*a*c, 0]
 

rule 1089
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[2*c*((2*p + 
 3)/((p + 1)*(b^2 - 4*a*c)))   Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fre 
eQ[{a, b, c}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[3*p])
 
Maple [A] (verified)

Time = 0.94 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.16

method result size
default \(\frac {\frac {4}{3} c d x e +\frac {2}{3} a \,e^{2}+\frac {2}{3} c \,d^{2}}{\left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {3}{2}}}+\frac {16 d e c \left (2 c d x e +a \,e^{2}+c \,d^{2}\right )}{3 \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right )^{2} \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}\) \(153\)
trager \(-\frac {2 \left (-16 c^{3} d^{3} e^{3} x^{3}-24 x^{2} a \,c^{2} d^{2} e^{4}-24 c^{3} d^{4} e^{2} x^{2}-6 x \,a^{2} c d \,e^{5}-36 x a \,c^{2} d^{3} e^{3}-6 c^{3} d^{5} e x +e^{6} a^{3}-9 d^{2} e^{4} a^{2} c -9 d^{4} e^{2} a \,c^{2}+d^{6} c^{3}\right )}{3 \left (e^{6} a^{3}-3 d^{2} e^{4} a^{2} c +3 d^{4} e^{2} a \,c^{2}-d^{6} c^{3}\right ) \left (c d \,x^{2} e +a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}} \left (a \,e^{2}-c \,d^{2}\right )}\) \(201\)
gosper \(-\frac {2 \left (e x +d \right ) \left (c d x +a e \right ) \left (-16 c^{3} d^{3} e^{3} x^{3}-24 x^{2} a \,c^{2} d^{2} e^{4}-24 c^{3} d^{4} e^{2} x^{2}-6 x \,a^{2} c d \,e^{5}-36 x a \,c^{2} d^{3} e^{3}-6 c^{3} d^{5} e x +e^{6} a^{3}-9 d^{2} e^{4} a^{2} c -9 d^{4} e^{2} a \,c^{2}+d^{6} c^{3}\right )}{3 \left (a^{4} e^{8}-4 a^{3} c \,d^{2} e^{6}+6 a^{2} c^{2} d^{4} e^{4}-4 a \,c^{3} d^{6} e^{2}+c^{4} d^{8}\right ) \left (c d \,x^{2} e +a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}\) \(213\)
orering \(-\frac {2 \left (-16 c^{3} d^{3} e^{3} x^{3}-24 x^{2} a \,c^{2} d^{2} e^{4}-24 c^{3} d^{4} e^{2} x^{2}-6 x \,a^{2} c d \,e^{5}-36 x a \,c^{2} d^{3} e^{3}-6 c^{3} d^{5} e x +e^{6} a^{3}-9 d^{2} e^{4} a^{2} c -9 d^{4} e^{2} a \,c^{2}+d^{6} c^{3}\right ) \left (e x +d \right ) \left (c d x +a e \right )}{3 \left (a^{4} e^{8}-4 a^{3} c \,d^{2} e^{6}+6 a^{2} c^{2} d^{4} e^{4}-4 a \,c^{3} d^{6} e^{2}+c^{4} d^{8}\right ) {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {5}{2}}}\) \(214\)

Input:

int(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

2/3*(2*c*d*e*x+a*e^2+c*d^2)/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/(a*d*e+(a*e^2+ 
c*d^2)*x+c*d*x^2*e)^(3/2)+16/3*d*e*c/(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)^2*(2* 
c*d*e*x+a*e^2+c*d^2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 491 vs. \(2 (124) = 248\).

Time = 4.84 (sec) , antiderivative size = 491, normalized size of antiderivative = 3.72 \[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {2 \, {\left (16 \, c^{3} d^{3} e^{3} x^{3} - c^{3} d^{6} + 9 \, a c^{2} d^{4} e^{2} + 9 \, a^{2} c d^{2} e^{4} - a^{3} e^{6} + 24 \, {\left (c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )} x^{2} + 6 \, {\left (c^{3} d^{5} e + 6 \, a c^{2} d^{3} e^{3} + a^{2} c d e^{5}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{3 \, {\left (a^{2} c^{4} d^{10} e^{2} - 4 \, a^{3} c^{3} d^{8} e^{4} + 6 \, a^{4} c^{2} d^{6} e^{6} - 4 \, a^{5} c d^{4} e^{8} + a^{6} d^{2} e^{10} + {\left (c^{6} d^{10} e^{2} - 4 \, a c^{5} d^{8} e^{4} + 6 \, a^{2} c^{4} d^{6} e^{6} - 4 \, a^{3} c^{3} d^{4} e^{8} + a^{4} c^{2} d^{2} e^{10}\right )} x^{4} + 2 \, {\left (c^{6} d^{11} e - 3 \, a c^{5} d^{9} e^{3} + 2 \, a^{2} c^{4} d^{7} e^{5} + 2 \, a^{3} c^{3} d^{5} e^{7} - 3 \, a^{4} c^{2} d^{3} e^{9} + a^{5} c d e^{11}\right )} x^{3} + {\left (c^{6} d^{12} - 9 \, a^{2} c^{4} d^{8} e^{4} + 16 \, a^{3} c^{3} d^{6} e^{6} - 9 \, a^{4} c^{2} d^{4} e^{8} + a^{6} e^{12}\right )} x^{2} + 2 \, {\left (a c^{5} d^{11} e - 3 \, a^{2} c^{4} d^{9} e^{3} + 2 \, a^{3} c^{3} d^{7} e^{5} + 2 \, a^{4} c^{2} d^{5} e^{7} - 3 \, a^{5} c d^{3} e^{9} + a^{6} d e^{11}\right )} x\right )}} \] Input:

integrate(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")
 

Output:

2/3*(16*c^3*d^3*e^3*x^3 - c^3*d^6 + 9*a*c^2*d^4*e^2 + 9*a^2*c*d^2*e^4 - a^ 
3*e^6 + 24*(c^3*d^4*e^2 + a*c^2*d^2*e^4)*x^2 + 6*(c^3*d^5*e + 6*a*c^2*d^3* 
e^3 + a^2*c*d*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(a^2*c^4 
*d^10*e^2 - 4*a^3*c^3*d^8*e^4 + 6*a^4*c^2*d^6*e^6 - 4*a^5*c*d^4*e^8 + a^6* 
d^2*e^10 + (c^6*d^10*e^2 - 4*a*c^5*d^8*e^4 + 6*a^2*c^4*d^6*e^6 - 4*a^3*c^3 
*d^4*e^8 + a^4*c^2*d^2*e^10)*x^4 + 2*(c^6*d^11*e - 3*a*c^5*d^9*e^3 + 2*a^2 
*c^4*d^7*e^5 + 2*a^3*c^3*d^5*e^7 - 3*a^4*c^2*d^3*e^9 + a^5*c*d*e^11)*x^3 + 
 (c^6*d^12 - 9*a^2*c^4*d^8*e^4 + 16*a^3*c^3*d^6*e^6 - 9*a^4*c^2*d^4*e^8 + 
a^6*e^12)*x^2 + 2*(a*c^5*d^11*e - 3*a^2*c^4*d^9*e^3 + 2*a^3*c^3*d^7*e^5 + 
2*a^4*c^2*d^5*e^7 - 3*a^5*c*d^3*e^9 + a^6*d*e^11)*x)
 

Sympy [F]

\[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int \frac {1}{\left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(1/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)
                                                                                    
                                                                                    
 

Output:

Integral((a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(-5/2), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(a*e^2-c*d^2>0)', see `assume?` f 
or more de
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 366 vs. \(2 (124) = 248\).

Time = 0.19 (sec) , antiderivative size = 366, normalized size of antiderivative = 2.77 \[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {2 \, {\left (2 \, {\left (4 \, {\left (\frac {2 \, c^{3} d^{3} e^{3} x}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac {3 \, {\left (c^{3} d^{4} e^{2} + a c^{2} d^{2} e^{4}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x + \frac {3 \, {\left (c^{3} d^{5} e + 6 \, a c^{2} d^{3} e^{3} + a^{2} c d e^{5}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x - \frac {c^{3} d^{6} - 9 \, a c^{2} d^{4} e^{2} - 9 \, a^{2} c d^{2} e^{4} + a^{3} e^{6}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )}}{3 \, {\left (c d e x^{2} + c d^{2} x + a e^{2} x + a d e\right )}^{\frac {3}{2}}} \] Input:

integrate(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")
 

Output:

2/3*(2*(4*(2*c^3*d^3*e^3*x/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 
- 4*a^3*c*d^2*e^6 + a^4*e^8) + 3*(c^3*d^4*e^2 + a*c^2*d^2*e^4)/(c^4*d^8 - 
4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))*x + 3*(c 
^3*d^5*e + 6*a*c^2*d^3*e^3 + a^2*c*d*e^5)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a 
^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))*x - (c^3*d^6 - 9*a*c^2*d^4*e^ 
2 - 9*a^2*c*d^2*e^4 + a^3*e^6)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4* 
e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))/(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)^ 
(3/2)
 

Mupad [B] (verification not implemented)

Time = 5.36 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.99 \[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {\left (2\,c\,d^2+4\,c\,x\,d\,e+2\,a\,e^2\right )\,\left (8\,c^2\,d^2\,e^2\,x^2-{\left (c\,d^2+a\,e^2\right )}^2+12\,a\,c\,d^2\,e^2+8\,c\,d\,e\,x\,\left (c\,d^2+a\,e^2\right )\right )}{3\,{\left ({\left (c\,d^2+a\,e^2\right )}^2-4\,a\,c\,d^2\,e^2\right )}^2\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}} \] Input:

int(1/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)
 

Output:

((2*a*e^2 + 2*c*d^2 + 4*c*d*e*x)*(8*c^2*d^2*e^2*x^2 - (a*e^2 + c*d^2)^2 + 
12*a*c*d^2*e^2 + 8*c*d*e*x*(a*e^2 + c*d^2)))/(3*((a*e^2 + c*d^2)^2 - 4*a*c 
*d^2*e^2)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2))
 

Reduce [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 647, normalized size of antiderivative = 4.90 \[ \int \frac {1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {-\frac {32 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a c \,d^{3} e^{2}}{3}-\frac {64 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a c \,d^{2} e^{3} x}{3}-\frac {32 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a c d \,e^{4} x^{2}}{3}-\frac {32 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c^{2} d^{4} e x}{3}-\frac {64 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c^{2} d^{3} e^{2} x^{2}}{3}-\frac {32 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c^{2} d^{2} e^{3} x^{3}}{3}-\frac {2 \sqrt {e x +d}\, a^{3} e^{6}}{3}+6 \sqrt {e x +d}\, a^{2} c \,d^{2} e^{4}+4 \sqrt {e x +d}\, a^{2} c d \,e^{5} x +6 \sqrt {e x +d}\, a \,c^{2} d^{4} e^{2}+24 \sqrt {e x +d}\, a \,c^{2} d^{3} e^{3} x +16 \sqrt {e x +d}\, a \,c^{2} d^{2} e^{4} x^{2}-\frac {2 \sqrt {e x +d}\, c^{3} d^{6}}{3}+4 \sqrt {e x +d}\, c^{3} d^{5} e x +16 \sqrt {e x +d}\, c^{3} d^{4} e^{2} x^{2}+\frac {32 \sqrt {e x +d}\, c^{3} d^{3} e^{3} x^{3}}{3}}{\sqrt {c d x +a e}\, \left (a^{4} c d \,e^{10} x^{3}-4 a^{3} c^{2} d^{3} e^{8} x^{3}+6 a^{2} c^{3} d^{5} e^{6} x^{3}-4 a \,c^{4} d^{7} e^{4} x^{3}+c^{5} d^{9} e^{2} x^{3}+a^{5} e^{11} x^{2}-2 a^{4} c \,d^{2} e^{9} x^{2}-2 a^{3} c^{2} d^{4} e^{7} x^{2}+8 a^{2} c^{3} d^{6} e^{5} x^{2}-7 a \,c^{4} d^{8} e^{3} x^{2}+2 c^{5} d^{10} e \,x^{2}+2 a^{5} d \,e^{10} x -7 a^{4} c \,d^{3} e^{8} x +8 a^{3} c^{2} d^{5} e^{6} x -2 a^{2} c^{3} d^{7} e^{4} x -2 a \,c^{4} d^{9} e^{2} x +c^{5} d^{11} x +a^{5} d^{2} e^{9}-4 a^{4} c \,d^{4} e^{7}+6 a^{3} c^{2} d^{6} e^{5}-4 a^{2} c^{3} d^{8} e^{3}+a \,c^{4} d^{10} e \right )} \] Input:

int(1/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)
 

Output:

(2*( - 16*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*c*d**3*e**2 - 32*sqr 
t(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*c*d**2*e**3*x - 16*sqrt(e)*sqrt(d 
)*sqrt(c)*sqrt(a*e + c*d*x)*a*c*d*e**4*x**2 - 16*sqrt(e)*sqrt(d)*sqrt(c)*s 
qrt(a*e + c*d*x)*c**2*d**4*e*x - 32*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d 
*x)*c**2*d**3*e**2*x**2 - 16*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*c** 
2*d**2*e**3*x**3 - sqrt(d + e*x)*a**3*e**6 + 9*sqrt(d + e*x)*a**2*c*d**2*e 
**4 + 6*sqrt(d + e*x)*a**2*c*d*e**5*x + 9*sqrt(d + e*x)*a*c**2*d**4*e**2 + 
 36*sqrt(d + e*x)*a*c**2*d**3*e**3*x + 24*sqrt(d + e*x)*a*c**2*d**2*e**4*x 
**2 - sqrt(d + e*x)*c**3*d**6 + 6*sqrt(d + e*x)*c**3*d**5*e*x + 24*sqrt(d 
+ e*x)*c**3*d**4*e**2*x**2 + 16*sqrt(d + e*x)*c**3*d**3*e**3*x**3))/(3*sqr 
t(a*e + c*d*x)*(a**5*d**2*e**9 + 2*a**5*d*e**10*x + a**5*e**11*x**2 - 4*a* 
*4*c*d**4*e**7 - 7*a**4*c*d**3*e**8*x - 2*a**4*c*d**2*e**9*x**2 + a**4*c*d 
*e**10*x**3 + 6*a**3*c**2*d**6*e**5 + 8*a**3*c**2*d**5*e**6*x - 2*a**3*c** 
2*d**4*e**7*x**2 - 4*a**3*c**2*d**3*e**8*x**3 - 4*a**2*c**3*d**8*e**3 - 2* 
a**2*c**3*d**7*e**4*x + 8*a**2*c**3*d**6*e**5*x**2 + 6*a**2*c**3*d**5*e**6 
*x**3 + a*c**4*d**10*e - 2*a*c**4*d**9*e**2*x - 7*a*c**4*d**8*e**3*x**2 - 
4*a*c**4*d**7*e**4*x**3 + c**5*d**11*x + 2*c**5*d**10*e*x**2 + c**5*d**9*e 
**2*x**3))