\(\int \frac {1}{(d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [272]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 289 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2}{3 \left (c d^2-a e^2\right ) (d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac {16 e}{3 \left (c d^2-a e^2\right )^2 (d+e x)^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {32 e^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{5 \left (c d^2-a e^2\right )^3 (d+e x)^3}+\frac {128 c d e^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 \left (c d^2-a e^2\right )^4 (d+e x)^2}+\frac {256 c^2 d^2 e^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{15 \left (c d^2-a e^2\right )^5 (d+e x)} \] Output:

-2/3/(-a*e^2+c*d^2)/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+16/3*e 
/(-a*e^2+c*d^2)^2/(e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+32/5*e 
^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)^3/(e*x+d)^3+128/ 
15*c*d*e^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)^4/(e*x+d 
)^2+256/15*c^2*d^2*e^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d 
^2)^5/(e*x+d)
 

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 193, normalized size of antiderivative = 0.67 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {2 \left (3 a^4 e^8-4 a^3 c d e^6 (5 d+2 e x)+6 a^2 c^2 d^2 e^4 \left (15 d^2+20 d e x+8 e^2 x^2\right )+12 a c^3 d^3 e^2 \left (5 d^3+30 d^2 e x+40 d e^2 x^2+16 e^3 x^3\right )+c^4 d^4 \left (-5 d^4+40 d^3 e x+240 d^2 e^2 x^2+320 d e^3 x^3+128 e^4 x^4\right )\right )}{15 \left (c d^2-a e^2\right )^5 (d+e x) ((a e+c d x) (d+e x))^{3/2}} \] Input:

Integrate[1/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]
 

Output:

(2*(3*a^4*e^8 - 4*a^3*c*d*e^6*(5*d + 2*e*x) + 6*a^2*c^2*d^2*e^4*(15*d^2 + 
20*d*e*x + 8*e^2*x^2) + 12*a*c^3*d^3*e^2*(5*d^3 + 30*d^2*e*x + 40*d*e^2*x^ 
2 + 16*e^3*x^3) + c^4*d^4*(-5*d^4 + 40*d^3*e*x + 240*d^2*e^2*x^2 + 320*d*e 
^3*x^3 + 128*e^4*x^4)))/(15*(c*d^2 - a*e^2)^5*(d + e*x)*((a*e + c*d*x)*(d 
+ e*x))^(3/2))
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.72, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {1129, 1089, 1088}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d+e x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1129

\(\displaystyle \frac {8 c d \int \frac {1}{\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{5/2}}dx}{5 \left (c d^2-a e^2\right )}+\frac {2}{5 (d+e x) \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1089

\(\displaystyle \frac {8 c d \left (-\frac {8 c d e \int \frac {1}{\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}dx}{3 \left (c d^2-a e^2\right )^2}-\frac {2 \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\right )}{5 \left (c d^2-a e^2\right )}+\frac {2}{5 (d+e x) \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

\(\Big \downarrow \) 1088

\(\displaystyle \frac {8 c d \left (\frac {16 c d e \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^4 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 \left (a e^2+c d^2+2 c d e x\right )}{3 \left (c d^2-a e^2\right )^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\right )}{5 \left (c d^2-a e^2\right )}+\frac {2}{5 (d+e x) \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}\)

Input:

Int[1/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]
 

Output:

2/(5*(c*d^2 - a*e^2)*(d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/ 
2)) + (8*c*d*((-2*(c*d^2 + a*e^2 + 2*c*d*e*x))/(3*(c*d^2 - a*e^2)^2*(a*d*e 
 + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (16*c*d*e*(c*d^2 + a*e^2 + 2*c* 
d*e*x))/(3*(c*d^2 - a*e^2)^4*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])) 
)/(5*(c*d^2 - a*e^2))
 

Defintions of rubi rules used

rule 1088
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 
2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c}, x] && 
 NeQ[b^2 - 4*a*c, 0]
 

rule 1089
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[2*c*((2*p + 
 3)/((p + 1)*(b^2 - 4*a*c)))   Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fre 
eQ[{a, b, c}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1129
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(-e)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/((m + p + 1)*(2* 
c*d - b*e))), x] + Simp[c*(Simplify[m + 2*p + 2]/((m + p + 1)*(2*c*d - b*e) 
))   Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d 
, e, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[Simplify[m + 2*p + 
2], 0]
 
Maple [A] (verified)

Time = 1.20 (sec) , antiderivative size = 242, normalized size of antiderivative = 0.84

method result size
default \(\frac {-\frac {2}{5 \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right ) \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}-\frac {8 d e c \left (-\frac {2 \left (2 d e c \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right )}{3 \left (a \,e^{2}-c \,d^{2}\right )^{2} \left (d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}+\frac {16 d e c \left (2 d e c \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right )}{3 \left (a \,e^{2}-c \,d^{2}\right )^{4} \sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}\right )}{5 \left (a \,e^{2}-c \,d^{2}\right )}}{e}\) \(242\)
gosper \(-\frac {2 \left (c d x +a e \right ) \left (128 c^{4} d^{4} e^{4} x^{4}+192 a \,c^{3} d^{3} e^{5} x^{3}+320 c^{4} d^{5} e^{3} x^{3}+48 a^{2} c^{2} d^{2} e^{6} x^{2}+480 a \,c^{3} d^{4} e^{4} x^{2}+240 c^{4} d^{6} e^{2} x^{2}-8 a^{3} c d \,e^{7} x +120 a^{2} c^{2} d^{3} e^{5} x +360 a \,c^{3} d^{5} e^{3} x +40 c^{4} d^{7} e x +3 a^{4} e^{8}-20 a^{3} c \,d^{2} e^{6}+90 a^{2} c^{2} d^{4} e^{4}+60 a \,c^{3} d^{6} e^{2}-5 c^{4} d^{8}\right )}{15 \left (a^{5} e^{10}-5 a^{4} c \,d^{2} e^{8}+10 a^{3} c^{2} d^{4} e^{6}-10 a^{2} c^{3} d^{6} e^{4}+5 a \,c^{4} d^{8} e^{2}-c^{5} d^{10}\right ) \left (c d \,x^{2} e +a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}\) \(300\)
orering \(-\frac {2 \left (128 c^{4} d^{4} e^{4} x^{4}+192 a \,c^{3} d^{3} e^{5} x^{3}+320 c^{4} d^{5} e^{3} x^{3}+48 a^{2} c^{2} d^{2} e^{6} x^{2}+480 a \,c^{3} d^{4} e^{4} x^{2}+240 c^{4} d^{6} e^{2} x^{2}-8 a^{3} c d \,e^{7} x +120 a^{2} c^{2} d^{3} e^{5} x +360 a \,c^{3} d^{5} e^{3} x +40 c^{4} d^{7} e x +3 a^{4} e^{8}-20 a^{3} c \,d^{2} e^{6}+90 a^{2} c^{2} d^{4} e^{4}+60 a \,c^{3} d^{6} e^{2}-5 c^{4} d^{8}\right ) \left (c d x +a e \right )}{15 \left (a^{5} e^{10}-5 a^{4} c \,d^{2} e^{8}+10 a^{3} c^{2} d^{4} e^{6}-10 a^{2} c^{3} d^{6} e^{4}+5 a \,c^{4} d^{8} e^{2}-c^{5} d^{10}\right ) {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {5}{2}}}\) \(301\)
trager \(-\frac {2 \left (128 c^{4} d^{4} e^{4} x^{4}+192 a \,c^{3} d^{3} e^{5} x^{3}+320 c^{4} d^{5} e^{3} x^{3}+48 a^{2} c^{2} d^{2} e^{6} x^{2}+480 a \,c^{3} d^{4} e^{4} x^{2}+240 c^{4} d^{6} e^{2} x^{2}-8 a^{3} c d \,e^{7} x +120 a^{2} c^{2} d^{3} e^{5} x +360 a \,c^{3} d^{5} e^{3} x +40 c^{4} d^{7} e x +3 a^{4} e^{8}-20 a^{3} c \,d^{2} e^{6}+90 a^{2} c^{2} d^{4} e^{4}+60 a \,c^{3} d^{6} e^{2}-5 c^{4} d^{8}\right ) \sqrt {c d \,x^{2} e +a \,e^{2} x +c \,d^{2} x +a d e}}{15 \left (a^{4} e^{8}-4 a^{3} c \,d^{2} e^{6}+6 a^{2} c^{2} d^{4} e^{4}-4 a \,c^{3} d^{6} e^{2}+c^{4} d^{8}\right ) \left (c d x +a e \right )^{2} \left (a \,e^{2}-c \,d^{2}\right ) \left (e x +d \right )^{3}}\) \(308\)

Input:

int(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(5/2),x,method=_RETURNVERB 
OSE)
 

Output:

1/e*(-2/5/(a*e^2-c*d^2)/(x+d/e)/(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3 
/2)-8/5*d*e*c/(a*e^2-c*d^2)*(-2/3*(2*d*e*c*(x+d/e)+a*e^2-c*d^2)/(a*e^2-c*d 
^2)^2/(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/2)+16/3*d*e*c/(a*e^2-c*d^ 
2)^4*(2*d*e*c*(x+d/e)+a*e^2-c*d^2)/(d*e*c*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e)) 
^(1/2)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 769 vs. \(2 (269) = 538\).

Time = 14.14 (sec) , antiderivative size = 769, normalized size of antiderivative = 2.66 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\frac {2 \, {\left (128 \, c^{4} d^{4} e^{4} x^{4} - 5 \, c^{4} d^{8} + 60 \, a c^{3} d^{6} e^{2} + 90 \, a^{2} c^{2} d^{4} e^{4} - 20 \, a^{3} c d^{2} e^{6} + 3 \, a^{4} e^{8} + 64 \, {\left (5 \, c^{4} d^{5} e^{3} + 3 \, a c^{3} d^{3} e^{5}\right )} x^{3} + 48 \, {\left (5 \, c^{4} d^{6} e^{2} + 10 \, a c^{3} d^{4} e^{4} + a^{2} c^{2} d^{2} e^{6}\right )} x^{2} + 8 \, {\left (5 \, c^{4} d^{7} e + 45 \, a c^{3} d^{5} e^{3} + 15 \, a^{2} c^{2} d^{3} e^{5} - a^{3} c d e^{7}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{15 \, {\left (a^{2} c^{5} d^{13} e^{2} - 5 \, a^{3} c^{4} d^{11} e^{4} + 10 \, a^{4} c^{3} d^{9} e^{6} - 10 \, a^{5} c^{2} d^{7} e^{8} + 5 \, a^{6} c d^{5} e^{10} - a^{7} d^{3} e^{12} + {\left (c^{7} d^{12} e^{3} - 5 \, a c^{6} d^{10} e^{5} + 10 \, a^{2} c^{5} d^{8} e^{7} - 10 \, a^{3} c^{4} d^{6} e^{9} + 5 \, a^{4} c^{3} d^{4} e^{11} - a^{5} c^{2} d^{2} e^{13}\right )} x^{5} + {\left (3 \, c^{7} d^{13} e^{2} - 13 \, a c^{6} d^{11} e^{4} + 20 \, a^{2} c^{5} d^{9} e^{6} - 10 \, a^{3} c^{4} d^{7} e^{8} - 5 \, a^{4} c^{3} d^{5} e^{10} + 7 \, a^{5} c^{2} d^{3} e^{12} - 2 \, a^{6} c d e^{14}\right )} x^{4} + {\left (3 \, c^{7} d^{14} e - 9 \, a c^{6} d^{12} e^{3} + a^{2} c^{5} d^{10} e^{5} + 25 \, a^{3} c^{4} d^{8} e^{7} - 35 \, a^{4} c^{3} d^{6} e^{9} + 17 \, a^{5} c^{2} d^{4} e^{11} - a^{6} c d^{2} e^{13} - a^{7} e^{15}\right )} x^{3} + {\left (c^{7} d^{15} + a c^{6} d^{13} e^{2} - 17 \, a^{2} c^{5} d^{11} e^{4} + 35 \, a^{3} c^{4} d^{9} e^{6} - 25 \, a^{4} c^{3} d^{7} e^{8} - a^{5} c^{2} d^{5} e^{10} + 9 \, a^{6} c d^{3} e^{12} - 3 \, a^{7} d e^{14}\right )} x^{2} + {\left (2 \, a c^{6} d^{14} e - 7 \, a^{2} c^{5} d^{12} e^{3} + 5 \, a^{3} c^{4} d^{10} e^{5} + 10 \, a^{4} c^{3} d^{8} e^{7} - 20 \, a^{5} c^{2} d^{6} e^{9} + 13 \, a^{6} c d^{4} e^{11} - 3 \, a^{7} d^{2} e^{13}\right )} x\right )}} \] Input:

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm=" 
fricas")
 

Output:

2/15*(128*c^4*d^4*e^4*x^4 - 5*c^4*d^8 + 60*a*c^3*d^6*e^2 + 90*a^2*c^2*d^4* 
e^4 - 20*a^3*c*d^2*e^6 + 3*a^4*e^8 + 64*(5*c^4*d^5*e^3 + 3*a*c^3*d^3*e^5)* 
x^3 + 48*(5*c^4*d^6*e^2 + 10*a*c^3*d^4*e^4 + a^2*c^2*d^2*e^6)*x^2 + 8*(5*c 
^4*d^7*e + 45*a*c^3*d^5*e^3 + 15*a^2*c^2*d^3*e^5 - a^3*c*d*e^7)*x)*sqrt(c* 
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(a^2*c^5*d^13*e^2 - 5*a^3*c^4*d^11*e^ 
4 + 10*a^4*c^3*d^9*e^6 - 10*a^5*c^2*d^7*e^8 + 5*a^6*c*d^5*e^10 - a^7*d^3*e 
^12 + (c^7*d^12*e^3 - 5*a*c^6*d^10*e^5 + 10*a^2*c^5*d^8*e^7 - 10*a^3*c^4*d 
^6*e^9 + 5*a^4*c^3*d^4*e^11 - a^5*c^2*d^2*e^13)*x^5 + (3*c^7*d^13*e^2 - 13 
*a*c^6*d^11*e^4 + 20*a^2*c^5*d^9*e^6 - 10*a^3*c^4*d^7*e^8 - 5*a^4*c^3*d^5* 
e^10 + 7*a^5*c^2*d^3*e^12 - 2*a^6*c*d*e^14)*x^4 + (3*c^7*d^14*e - 9*a*c^6* 
d^12*e^3 + a^2*c^5*d^10*e^5 + 25*a^3*c^4*d^8*e^7 - 35*a^4*c^3*d^6*e^9 + 17 
*a^5*c^2*d^4*e^11 - a^6*c*d^2*e^13 - a^7*e^15)*x^3 + (c^7*d^15 + a*c^6*d^1 
3*e^2 - 17*a^2*c^5*d^11*e^4 + 35*a^3*c^4*d^9*e^6 - 25*a^4*c^3*d^7*e^8 - a^ 
5*c^2*d^5*e^10 + 9*a^6*c*d^3*e^12 - 3*a^7*d*e^14)*x^2 + (2*a*c^6*d^14*e - 
7*a^2*c^5*d^12*e^3 + 5*a^3*c^4*d^10*e^5 + 10*a^4*c^3*d^8*e^7 - 20*a^5*c^2* 
d^6*e^9 + 13*a^6*c*d^4*e^11 - 3*a^7*d^2*e^13)*x)
 

Sympy [F]

\[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int \frac {1}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}} \left (d + e x\right )}\, dx \] Input:

integrate(1/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)
 

Output:

Integral(1/(((d + e*x)*(a*e + c*d*x))**(5/2)*(d + e*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm=" 
maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assume 
?` for mor
 

Giac [F]

\[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\int { \frac {1}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {5}{2}} {\left (e x + d\right )}} \,d x } \] Input:

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm=" 
giac")
 

Output:

integrate(1/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)*(e*x + d)), x)
 

Mupad [B] (verification not implemented)

Time = 5.85 (sec) , antiderivative size = 253, normalized size of antiderivative = 0.88 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (3\,a^4\,e^8-20\,a^3\,c\,d^2\,e^6-8\,a^3\,c\,d\,e^7\,x+90\,a^2\,c^2\,d^4\,e^4+120\,a^2\,c^2\,d^3\,e^5\,x+48\,a^2\,c^2\,d^2\,e^6\,x^2+60\,a\,c^3\,d^6\,e^2+360\,a\,c^3\,d^5\,e^3\,x+480\,a\,c^3\,d^4\,e^4\,x^2+192\,a\,c^3\,d^3\,e^5\,x^3-5\,c^4\,d^8+40\,c^4\,d^7\,e\,x+240\,c^4\,d^6\,e^2\,x^2+320\,c^4\,d^5\,e^3\,x^3+128\,c^4\,d^4\,e^4\,x^4\right )}{15\,{\left (a\,e+c\,d\,x\right )}^2\,{\left (a\,e^2-c\,d^2\right )}^5\,{\left (d+e\,x\right )}^3} \] Input:

int(1/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)),x)
 

Output:

-(2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*(3*a^4*e^8 - 5*c^4*d^8 + 
 60*a*c^3*d^6*e^2 - 20*a^3*c*d^2*e^6 + 90*a^2*c^2*d^4*e^4 + 240*c^4*d^6*e^ 
2*x^2 + 320*c^4*d^5*e^3*x^3 + 128*c^4*d^4*e^4*x^4 + 40*c^4*d^7*e*x - 8*a^3 
*c*d*e^7*x + 48*a^2*c^2*d^2*e^6*x^2 + 360*a*c^3*d^5*e^3*x + 120*a^2*c^2*d^ 
3*e^5*x + 480*a*c^3*d^4*e^4*x^2 + 192*a*c^3*d^3*e^5*x^3))/(15*(a*e + c*d*x 
)^2*(a*e^2 - c*d^2)^5*(d + e*x)^3)
 

Reduce [B] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 977, normalized size of antiderivative = 3.38 \[ \int \frac {1}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

int(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)
 

Output:

(2*(128*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*c**2*d**5*e**2 + 384*s 
qrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*c**2*d**4*e**3*x + 384*sqrt(e)* 
sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*c**2*d**3*e**4*x**2 + 128*sqrt(e)*sqrt 
(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*c**2*d**2*e**5*x**3 + 128*sqrt(e)*sqrt(d)* 
sqrt(c)*sqrt(a*e + c*d*x)*c**3*d**6*e*x + 384*sqrt(e)*sqrt(d)*sqrt(c)*sqrt 
(a*e + c*d*x)*c**3*d**5*e**2*x**2 + 384*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + 
 c*d*x)*c**3*d**4*e**3*x**3 + 128*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x 
)*c**3*d**3*e**4*x**4 - 3*sqrt(d + e*x)*a**4*e**8 + 20*sqrt(d + e*x)*a**3* 
c*d**2*e**6 + 8*sqrt(d + e*x)*a**3*c*d*e**7*x - 90*sqrt(d + e*x)*a**2*c**2 
*d**4*e**4 - 120*sqrt(d + e*x)*a**2*c**2*d**3*e**5*x - 48*sqrt(d + e*x)*a* 
*2*c**2*d**2*e**6*x**2 - 60*sqrt(d + e*x)*a*c**3*d**6*e**2 - 360*sqrt(d + 
e*x)*a*c**3*d**5*e**3*x - 480*sqrt(d + e*x)*a*c**3*d**4*e**4*x**2 - 192*sq 
rt(d + e*x)*a*c**3*d**3*e**5*x**3 + 5*sqrt(d + e*x)*c**4*d**8 - 40*sqrt(d 
+ e*x)*c**4*d**7*e*x - 240*sqrt(d + e*x)*c**4*d**6*e**2*x**2 - 320*sqrt(d 
+ e*x)*c**4*d**5*e**3*x**3 - 128*sqrt(d + e*x)*c**4*d**4*e**4*x**4))/(15*s 
qrt(a*e + c*d*x)*(a**6*d**3*e**11 + 3*a**6*d**2*e**12*x + 3*a**6*d*e**13*x 
**2 + a**6*e**14*x**3 - 5*a**5*c*d**5*e**9 - 14*a**5*c*d**4*e**10*x - 12*a 
**5*c*d**3*e**11*x**2 - 2*a**5*c*d**2*e**12*x**3 + a**5*c*d*e**13*x**4 + 1 
0*a**4*c**2*d**7*e**7 + 25*a**4*c**2*d**6*e**8*x + 15*a**4*c**2*d**5*e**9* 
x**2 - 5*a**4*c**2*d**4*e**10*x**3 - 5*a**4*c**2*d**3*e**11*x**4 - 10*a...