\(\int \sqrt [4]{a d e+(c d^2+a e^2) x+c d e x^2} \, dx\) [339]

Optimal result
Mathematica [C] (verified)
Rubi [B] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 29, antiderivative size = 206 \[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {\left (c d^2+a e^2+2 c d e x\right ) \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{3 c d e}-\frac {\left (c d^2-a e^2\right )^3 \left (-\frac {c d e \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )}{\left (c d^2-a e^2\right )^2}\right )^{3/4} \operatorname {EllipticF}\left (\frac {1}{2} \arcsin \left (\frac {a e^2+c d (d+2 e x)}{c d^2-a e^2}\right ),2\right )}{3 \sqrt {2} c^2 d^2 e^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/4}} \] Output:

1/3*(2*c*d*e*x+a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4)/c/d/e- 
1/6*(-a*e^2+c*d^2)^3*(-c*d*e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)/(-a*e^2+c*d 
^2)^2)^(3/4)*InverseJacobiAM(1/2*arcsin((a*e^2+c*d*(2*e*x+d))/(-a*e^2+c*d^ 
2)),2^(1/2))*2^(1/2)/c^2/d^2/e^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.03 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.47 \[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {4 (a e+c d x) \sqrt [4]{(a e+c d x) (d+e x)} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {5}{4},\frac {9}{4},\frac {e (a e+c d x)}{-c d^2+a e^2}\right )}{5 c d \sqrt [4]{\frac {c d (d+e x)}{c d^2-a e^2}}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/4),x]
 

Output:

(4*(a*e + c*d*x)*((a*e + c*d*x)*(d + e*x))^(1/4)*Hypergeometric2F1[-1/4, 5 
/4, 9/4, (e*(a*e + c*d*x))/(-(c*d^2) + a*e^2)])/(5*c*d*((c*d*(d + e*x))/(c 
*d^2 - a*e^2))^(1/4))
 

Rubi [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(454\) vs. \(2(206)=412\).

Time = 0.71 (sec) , antiderivative size = 454, normalized size of antiderivative = 2.20, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {1087, 1094, 761}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \, dx\)

\(\Big \downarrow \) 1087

\(\displaystyle \frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c d e}-\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/4}}dx}{12 c d e}\)

\(\Big \downarrow \) 1094

\(\displaystyle \frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c d e}-\frac {\left (c d^2-a e^2\right )^2 \sqrt {\left (a e^2+c d^2+2 c d e x\right )^2} \int \frac {1}{\sqrt {\left (c d^2-a e^2\right )^2+4 c d e \left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )}}d\sqrt [4]{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{3 c d e \left (a e^2+c d^2+2 c d e x\right )}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {\left (a e^2+c d^2+2 c d e x\right ) \sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{3 c d e}-\frac {\left (c d^2-a e^2\right )^{5/2} \sqrt {\left (a e^2+c d^2+2 c d e x\right )^2} \left (\frac {2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d^2-a e^2}+1\right ) \sqrt {\frac {4 c d e \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )+\left (c d^2-a e^2\right )^2}{\left (c d^2-a e^2\right )^2 \left (\frac {2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c d^2-a e^2}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} \sqrt [4]{e} \sqrt [4]{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}{\sqrt {c d^2-a e^2}}\right ),\frac {1}{2}\right )}{6 \sqrt {2} c^{5/4} d^{5/4} e^{5/4} \left (a e^2+c d^2+2 c d e x\right ) \sqrt {4 c d e \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )+\left (c d^2-a e^2\right )^2}}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/4),x]
 

Output:

((c*d^2 + a*e^2 + 2*c*d*e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/4) 
)/(3*c*d*e) - ((c*d^2 - a*e^2)^(5/2)*Sqrt[(c*d^2 + a*e^2 + 2*c*d*e*x)^2]*( 
1 + (2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2] 
)/(c*d^2 - a*e^2))*Sqrt[((c*d^2 - a*e^2)^2 + 4*c*d*e*(a*d*e + (c*d^2 + a*e 
^2)*x + c*d*e*x^2))/((c*d^2 - a*e^2)^2*(1 + (2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqr 
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c*d^2 - a*e^2))^2)]*EllipticF[2 
*ArcTan[(Sqrt[2]*c^(1/4)*d^(1/4)*e^(1/4)*(a*d*e + (c*d^2 + a*e^2)*x + c*d* 
e*x^2)^(1/4))/Sqrt[c*d^2 - a*e^2]], 1/2])/(6*Sqrt[2]*c^(5/4)*d^(5/4)*e^(5/ 
4)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[(c*d^2 - a*e^2)^2 + 4*c*d*e*(a*d*e + ( 
c*d^2 + a*e^2)*x + c*d*e*x^2)])
 

Defintions of rubi rules used

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1087
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x) 
*((a + b*x + c*x^2)^p/(2*c*(2*p + 1))), x] - Simp[p*((b^2 - 4*a*c)/(2*c*(2* 
p + 1)))   Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && 
GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[3*p])
 

rule 1094
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[4*(Sqrt[(b 
+ 2*c*x)^2]/(b + 2*c*x))   Subst[Int[x^(4*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4 
*c*x^4], x], x, (a + b*x + c*x^2)^(1/4)], x] /; FreeQ[{a, b, c}, x] && Inte 
gerQ[4*p]
 
Maple [F]

\[\int {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {1}{4}}d x\]

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/4),x)
 

Output:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/4),x)
 

Fricas [F]

\[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\int { {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {1}{4}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4),x, algorithm="fricas")
 

Output:

integral((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/4), x)
 

Sympy [F]

\[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\int \sqrt [4]{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/4),x)
 

Output:

Integral((a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(1/4), x)
 

Maxima [F]

\[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\int { {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {1}{4}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4),x, algorithm="maxima")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/4), x)
 

Giac [F]

\[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\int { {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {1}{4}} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4),x, algorithm="giac")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/4), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\int {\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{1/4} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/4),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/4), x)
 

Reduce [F]

\[ \int \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx=\frac {8 \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} a d e +4 \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} a \,e^{2} x +4 \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} c \,d^{2} x +\left (\int \frac {\left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} x}{a c d \,e^{3} x^{2}+c^{2} d^{3} e \,x^{2}+a^{2} e^{4} x +2 a c \,d^{2} e^{2} x +c^{2} d^{4} x +a^{2} d \,e^{3}+a c \,d^{3} e}d x \right ) a^{3} e^{6}-\left (\int \frac {\left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} x}{a c d \,e^{3} x^{2}+c^{2} d^{3} e \,x^{2}+a^{2} e^{4} x +2 a c \,d^{2} e^{2} x +c^{2} d^{4} x +a^{2} d \,e^{3}+a c \,d^{3} e}d x \right ) a^{2} c \,d^{2} e^{4}-\left (\int \frac {\left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} x}{a c d \,e^{3} x^{2}+c^{2} d^{3} e \,x^{2}+a^{2} e^{4} x +2 a c \,d^{2} e^{2} x +c^{2} d^{4} x +a^{2} d \,e^{3}+a c \,d^{3} e}d x \right ) a \,c^{2} d^{4} e^{2}+\left (\int \frac {\left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} x}{a c d \,e^{3} x^{2}+c^{2} d^{3} e \,x^{2}+a^{2} e^{4} x +2 a c \,d^{2} e^{2} x +c^{2} d^{4} x +a^{2} d \,e^{3}+a c \,d^{3} e}d x \right ) c^{3} d^{6}}{6 a \,e^{2}+6 c \,d^{2}} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4),x)
 

Output:

(8*(a*d*e + a*e**2*x + c*d**2*x + c*d*e*x**2)**(1/4)*a*d*e + 4*(a*d*e + a* 
e**2*x + c*d**2*x + c*d*e*x**2)**(1/4)*a*e**2*x + 4*(a*d*e + a*e**2*x + c* 
d**2*x + c*d*e*x**2)**(1/4)*c*d**2*x + int(((a*d*e + a*e**2*x + c*d**2*x + 
 c*d*e*x**2)**(1/4)*x)/(a**2*d*e**3 + a**2*e**4*x + a*c*d**3*e + 2*a*c*d** 
2*e**2*x + a*c*d*e**3*x**2 + c**2*d**4*x + c**2*d**3*e*x**2),x)*a**3*e**6 
- int(((a*d*e + a*e**2*x + c*d**2*x + c*d*e*x**2)**(1/4)*x)/(a**2*d*e**3 + 
 a**2*e**4*x + a*c*d**3*e + 2*a*c*d**2*e**2*x + a*c*d*e**3*x**2 + c**2*d** 
4*x + c**2*d**3*e*x**2),x)*a**2*c*d**2*e**4 - int(((a*d*e + a*e**2*x + c*d 
**2*x + c*d*e*x**2)**(1/4)*x)/(a**2*d*e**3 + a**2*e**4*x + a*c*d**3*e + 2* 
a*c*d**2*e**2*x + a*c*d*e**3*x**2 + c**2*d**4*x + c**2*d**3*e*x**2),x)*a*c 
**2*d**4*e**2 + int(((a*d*e + a*e**2*x + c*d**2*x + c*d*e*x**2)**(1/4)*x)/ 
(a**2*d*e**3 + a**2*e**4*x + a*c*d**3*e + 2*a*c*d**2*e**2*x + a*c*d*e**3*x 
**2 + c**2*d**4*x + c**2*d**3*e*x**2),x)*c**3*d**6)/(6*(a*e**2 + c*d**2))