\(\int \frac {\sqrt [4]{a d e+(c d^2+a e^2) x+c d e x^2}}{d+e x} \, dx\) [340]

Optimal result
Mathematica [C] (verified)
Rubi [A] (warning: unable to verify)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 171 \[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {2 \sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e}+\frac {2 \sqrt {c d^2-a e^2} (a e+c d x)^{3/2} \left (\frac {c d (d+e x)}{e (a e+c d x)}\right )^{3/4} \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\frac {\sqrt {c d^2-a e^2}}{\sqrt {e} \sqrt {a e+c d x}}\right ),2\right )}{c d \sqrt {e} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/4}} \] Output:

2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4)/e+2*(-a*e^2+c*d^2)^(1/2)*(c*d*x+ 
a*e)^(3/2)*(c*d*(e*x+d)/e/(c*d*x+a*e))^(3/4)*InverseJacobiAM(1/2*arctan((- 
a*e^2+c*d^2)^(1/2)/e^(1/2)/(c*d*x+a*e)^(1/2)),2^(1/2))/c/d/e^(1/2)/(a*d*e+ 
(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/4)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.04 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.57 \[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {4 (a e+c d x)^2 \left (\frac {c d (d+e x)}{c d^2-a e^2}\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {5}{4},\frac {9}{4},\frac {e (a e+c d x)}{-c d^2+a e^2}\right )}{5 c d ((a e+c d x) (d+e x))^{3/4}} \] Input:

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/4)/(d + e*x),x]
 

Output:

(4*(a*e + c*d*x)^2*((c*d*(d + e*x))/(c*d^2 - a*e^2))^(3/4)*Hypergeometric2 
F1[3/4, 5/4, 9/4, (e*(a*e + c*d*x))/(-(c*d^2) + a*e^2)])/(5*c*d*((a*e + c* 
d*x)*(d + e*x))^(3/4))
 

Rubi [A] (warning: unable to verify)

Time = 0.67 (sec) , antiderivative size = 236, normalized size of antiderivative = 1.38, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {1138, 60, 73, 768, 858, 807, 229}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{d+e x} \, dx\)

\(\Big \downarrow \) 1138

\(\displaystyle \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \int \frac {\sqrt [4]{a e+c d x}}{\left (\frac {e x}{d}+1\right )^{3/4}}dx}{d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}\)

\(\Big \downarrow \) 60

\(\displaystyle \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (\frac {2 d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}{e}-\frac {\left (c d^2-a e^2\right ) \int \frac {1}{(a e+c d x)^{3/4} \left (\frac {e x}{d}+1\right )^{3/4}}dx}{2 e}\right )}{d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (\frac {2 d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}{e}-\frac {2 \left (c d^2-a e^2\right ) \int \frac {1}{\left (-\frac {a e^2}{c d^2}+\frac {(a e+c d x) e}{c d^2}+1\right )^{3/4}}d\sqrt [4]{a e+c d x}}{c d e}\right )}{d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}\)

\(\Big \downarrow \) 768

\(\displaystyle \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (\frac {2 d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}{e}-\frac {2 \left (c d^2-a e^2\right ) (a e+c d x)^{3/4} \left (\frac {c d^2-a e^2}{e (a e+c d x)}+1\right )^{3/4} \int \frac {1}{(a e+c d x)^{3/4} \left (\frac {c d^2-a e^2}{e (a e+c d x)}+1\right )^{3/4}}d\sqrt [4]{a e+c d x}}{c d e \left (-\frac {a e^2}{c d^2}+\frac {e (a e+c d x)}{c d^2}+1\right )^{3/4}}\right )}{d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}\)

\(\Big \downarrow \) 858

\(\displaystyle \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (\frac {2 \left (c d^2-a e^2\right ) (a e+c d x)^{3/4} \left (\frac {c d^2-a e^2}{e (a e+c d x)}+1\right )^{3/4} \int \frac {1}{\sqrt [4]{a e+c d x} \left (\frac {\left (c d^2-a e^2\right ) (a e+c d x)}{e}+1\right )^{3/4}}d\frac {1}{\sqrt [4]{a e+c d x}}}{c d e \left (-\frac {a e^2}{c d^2}+\frac {e (a e+c d x)}{c d^2}+1\right )^{3/4}}+\frac {2 d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}{e}\right )}{d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (\frac {\left (c d^2-a e^2\right ) (a e+c d x)^{3/4} \left (\frac {c d^2-a e^2}{e (a e+c d x)}+1\right )^{3/4} \int \frac {1}{\left (\frac {\sqrt {a e+c d x} \left (c d^2-a e^2\right )}{e}+1\right )^{3/4}}d\sqrt {a e+c d x}}{c d e \left (-\frac {a e^2}{c d^2}+\frac {e (a e+c d x)}{c d^2}+1\right )^{3/4}}+\frac {2 d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}{e}\right )}{d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}\)

\(\Big \downarrow \) 229

\(\displaystyle \frac {\sqrt [4]{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (\frac {2 \sqrt {c d^2-a e^2} (a e+c d x)^{3/4} \left (\frac {c d^2-a e^2}{e (a e+c d x)}+1\right )^{3/4} \operatorname {EllipticF}\left (\frac {1}{2} \arctan \left (\frac {\sqrt {c d^2-a e^2} \sqrt {a e+c d x}}{\sqrt {e}}\right ),2\right )}{c d \sqrt {e} \left (-\frac {a e^2}{c d^2}+\frac {e (a e+c d x)}{c d^2}+1\right )^{3/4}}+\frac {2 d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}{e}\right )}{d \sqrt [4]{\frac {e x}{d}+1} \sqrt [4]{a e+c d x}}\)

Input:

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/4)/(d + e*x),x]
 

Output:

((a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(1/4)*((2*d*(a*e + c*d*x)^(1/4)*( 
1 + (e*x)/d)^(1/4))/e + (2*Sqrt[c*d^2 - a*e^2]*(a*e + c*d*x)^(3/4)*(1 + (c 
*d^2 - a*e^2)/(e*(a*e + c*d*x)))^(3/4)*EllipticF[ArcTan[(Sqrt[c*d^2 - a*e^ 
2]*Sqrt[a*e + c*d*x])/Sqrt[e]]/2, 2])/(c*d*Sqrt[e]*(1 - (a*e^2)/(c*d^2) + 
(e*(a*e + c*d*x))/(c*d^2))^(3/4))))/(d*(a*e + c*d*x)^(1/4)*(1 + (e*x)/d)^( 
1/4))
 

Defintions of rubi rules used

rule 60
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + n + 1))), x] + Simp[n*((b*c - a*d)/( 
b*(m + n + 1)))   Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, 
 c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !Integer 
Q[n] || (GtQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinear 
Q[a, b, c, d, m, n, x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 229
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]) 
)*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a 
, 0] && PosQ[b/a]
 

rule 768
Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Simp[x^3*((1 + a/(b*x^4))^(3 
/4)/(a + b*x^4)^(3/4))   Int[1/(x^3*(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ 
[{a, b}, x]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 

rule 1138
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Sy 
mbol] :> Simp[d^m*((a + b*x + c*x^2)^FracPart[p]/((1 + e*(x/d))^FracPart[p] 
*(a/d + (c*x)/e)^FracPart[p]))   Int[(1 + e*(x/d))^(m + p)*(a/d + (c/e)*x)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] 
&& (IntegerQ[m] || GtQ[d, 0]) &&  !(IGtQ[m, 0] && (IntegerQ[3*p] || Integer 
Q[4*p]))
 
Maple [F]

\[\int \frac {{\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {1}{4}}}{e x +d}d x\]

Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/4)/(e*x+d),x)
 

Output:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(1/4)/(e*x+d),x)
 

Fricas [F]

\[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {1}{4}}}{e x + d} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4)/(e*x+d),x, algorithm="fr 
icas")
 

Output:

integral((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/4)/(e*x + d), x)
 

Sympy [F]

\[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {\sqrt [4]{\left (d + e x\right ) \left (a e + c d x\right )}}{d + e x}\, dx \] Input:

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/4)/(e*x+d),x)
 

Output:

Integral(((d + e*x)*(a*e + c*d*x))**(1/4)/(d + e*x), x)
 

Maxima [F]

\[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {1}{4}}}{e x + d} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4)/(e*x+d),x, algorithm="ma 
xima")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/4)/(e*x + d), x)
 

Giac [F]

\[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {1}{4}}}{e x + d} \,d x } \] Input:

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4)/(e*x+d),x, algorithm="gi 
ac")
 

Output:

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(1/4)/(e*x + d), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{1/4}}{d+e\,x} \,d x \] Input:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/4)/(d + e*x),x)
 

Output:

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/4)/(d + e*x), x)
 

Reduce [F]

\[ \int \frac {\sqrt [4]{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{d+e x} \, dx=\frac {4 \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} a e -\left (\int \frac {\left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} x}{a c d \,e^{3} x^{2}+c^{2} d^{3} e \,x^{2}+a^{2} e^{4} x +2 a c \,d^{2} e^{2} x +c^{2} d^{4} x +a^{2} d \,e^{3}+a c \,d^{3} e}d x \right ) a^{2} c d \,e^{4}+\left (\int \frac {\left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {1}{4}} x}{a c d \,e^{3} x^{2}+c^{2} d^{3} e \,x^{2}+a^{2} e^{4} x +2 a c \,d^{2} e^{2} x +c^{2} d^{4} x +a^{2} d \,e^{3}+a c \,d^{3} e}d x \right ) c^{3} d^{5}}{a \,e^{2}+c \,d^{2}} \] Input:

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/4)/(e*x+d),x)
 

Output:

(4*(a*d*e + a*e**2*x + c*d**2*x + c*d*e*x**2)**(1/4)*a*e - int(((a*d*e + a 
*e**2*x + c*d**2*x + c*d*e*x**2)**(1/4)*x)/(a**2*d*e**3 + a**2*e**4*x + a* 
c*d**3*e + 2*a*c*d**2*e**2*x + a*c*d*e**3*x**2 + c**2*d**4*x + c**2*d**3*e 
*x**2),x)*a**2*c*d*e**4 + int(((a*d*e + a*e**2*x + c*d**2*x + c*d*e*x**2)* 
*(1/4)*x)/(a**2*d*e**3 + a**2*e**4*x + a*c*d**3*e + 2*a*c*d**2*e**2*x + a* 
c*d*e**3*x**2 + c**2*d**4*x + c**2*d**3*e*x**2),x)*c**3*d**5)/(a*e**2 + c* 
d**2)