\(\int \frac {x}{(d+e x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\) [116]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 138 \[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=-\frac {2 d}{3 e \left (c d^2-a e^2\right ) (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac {2 \left (c d^2+3 a e^2\right ) \left (c d^2+a e^2+2 c d e x\right )}{3 e \left (c d^2-a e^2\right )^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \] Output:

-2/3*d/e/(-a*e^2+c*d^2)/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+2/ 
3*(3*a*e^2+c*d^2)*(2*c*d*e*x+a*e^2+c*d^2)/e/(-a*e^2+c*d^2)^3/(a*d*e+(a*e^2 
+c*d^2)*x+c*d*e*x^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.72 \[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \left (c^2 d^3 x (3 d+2 e x)+a^2 e^3 (2 d+3 e x)+2 a c d e \left (3 d^2+5 d e x+3 e^2 x^2\right )\right )}{3 \left (c d^2-a e^2\right )^3 (d+e x) \sqrt {(a e+c d x) (d+e x)}} \] Input:

Integrate[x/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]
 

Output:

(2*(c^2*d^3*x*(3*d + 2*e*x) + a^2*e^3*(2*d + 3*e*x) + 2*a*c*d*e*(3*d^2 + 5 
*d*e*x + 3*e^2*x^2)))/(3*(c*d^2 - a*e^2)^3*(d + e*x)*Sqrt[(a*e + c*d*x)*(d 
 + e*x)])
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {1220, 1088}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{(d+e x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1220

\(\displaystyle -\frac {\left (3 a e^2+c d^2\right ) \int \frac {1}{\left (c d e x^2+\left (c d^2+a e^2\right ) x+a d e\right )^{3/2}}dx}{3 e \left (c d^2-a e^2\right )}-\frac {2 d}{3 e (d+e x) \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

\(\Big \downarrow \) 1088

\(\displaystyle \frac {2 \left (3 a e^2+c d^2\right ) \left (a e^2+c d^2+2 c d e x\right )}{3 e \left (c d^2-a e^2\right )^3 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac {2 d}{3 e (d+e x) \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\)

Input:

Int[x/((d + e*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]
 

Output:

(-2*d)/(3*e*(c*d^2 - a*e^2)*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d 
*e*x^2]) + (2*(c*d^2 + 3*a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x))/(3*e*(c*d^2 - 
 a*e^2)^3*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])
 

Defintions of rubi rules used

rule 1088
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 
2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c}, x] && 
 NeQ[b^2 - 4*a*c, 0]
 

rule 1220
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d*g - e*f)*(d + e*x)^m*((a + b*x + c*x 
^2)^(p + 1)/((2*c*d - b*e)*(m + p + 1))), x] + Simp[(m*(g*(c*d - b*e) + c*e 
*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1))   Int[(d + e*x 
)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, 
 x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((LtQ[m, -1] &&  !IGtQ[m + p + 1, 0 
]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0 
]
 
Maple [A] (verified)

Time = 2.22 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.08

method result size
gosper \(-\frac {2 \left (c d x +a e \right ) \left (6 x^{2} a c d \,e^{3}+2 x^{2} c^{2} d^{3} e +3 a^{2} e^{4} x +10 a c \,d^{2} e^{2} x +3 c^{2} d^{4} x +2 a^{2} d \,e^{3}+6 a c \,d^{3} e \right )}{3 \left (e^{6} a^{3}-3 d^{2} e^{4} a^{2} c +3 d^{4} e^{2} a \,c^{2}-d^{6} c^{3}\right ) \left (c d \,x^{2} e +a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}\) \(149\)
orering \(-\frac {2 \left (6 x^{2} a c d \,e^{3}+2 x^{2} c^{2} d^{3} e +3 a^{2} e^{4} x +10 a c \,d^{2} e^{2} x +3 c^{2} d^{4} x +2 a^{2} d \,e^{3}+6 a c \,d^{3} e \right ) \left (c d x +a e \right )}{3 \left (e^{6} a^{3}-3 d^{2} e^{4} a^{2} c +3 d^{4} e^{2} a \,c^{2}-d^{6} c^{3}\right ) {\left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e \right )}^{\frac {3}{2}}}\) \(150\)
trager \(-\frac {2 \left (6 x^{2} a c d \,e^{3}+2 x^{2} c^{2} d^{3} e +3 a^{2} e^{4} x +10 a c \,d^{2} e^{2} x +3 c^{2} d^{4} x +2 a^{2} d \,e^{3}+6 a c \,d^{3} e \right ) \sqrt {c d \,x^{2} e +a \,e^{2} x +c \,d^{2} x +a d e}}{3 \left (a^{2} e^{4}-2 a c \,d^{2} e^{2}+c^{2} d^{4}\right ) \left (e x +d \right )^{2} \left (a \,e^{2}-c \,d^{2}\right ) \left (c d x +a e \right )}\) \(157\)
default \(\frac {4 c d x e +2 a \,e^{2}+2 c \,d^{2}}{e \left (4 a c \,d^{2} e^{2}-\left (a \,e^{2}+c \,d^{2}\right )^{2}\right ) \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d \,x^{2} e}}-\frac {d \left (-\frac {2}{3 \left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right ) \sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}+\frac {8 d e c \left (2 d e c \left (x +\frac {d}{e}\right )+a \,e^{2}-c \,d^{2}\right )}{3 \left (a \,e^{2}-c \,d^{2}\right )^{3} \sqrt {d e c \left (x +\frac {d}{e}\right )^{2}+\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}\right )}{e^{2}}\) \(226\)

Input:

int(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*x^2*e)^(3/2),x,method=_RETURNVERB 
OSE)
 

Output:

-2/3*(c*d*x+a*e)*(6*a*c*d*e^3*x^2+2*c^2*d^3*e*x^2+3*a^2*e^4*x+10*a*c*d^2*e 
^2*x+3*c^2*d^4*x+2*a^2*d*e^3+6*a*c*d^3*e)/(a^3*e^6-3*a^2*c*d^2*e^4+3*a*c^2 
*d^4*e^2-c^3*d^6)/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 314 vs. \(2 (130) = 260\).

Time = 1.43 (sec) , antiderivative size = 314, normalized size of antiderivative = 2.28 \[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {2 \, {\left (6 \, a c d^{3} e + 2 \, a^{2} d e^{3} + 2 \, {\left (c^{2} d^{3} e + 3 \, a c d e^{3}\right )} x^{2} + {\left (3 \, c^{2} d^{4} + 10 \, a c d^{2} e^{2} + 3 \, a^{2} e^{4}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{3 \, {\left (a c^{3} d^{8} e - 3 \, a^{2} c^{2} d^{6} e^{3} + 3 \, a^{3} c d^{4} e^{5} - a^{4} d^{2} e^{7} + {\left (c^{4} d^{7} e^{2} - 3 \, a c^{3} d^{5} e^{4} + 3 \, a^{2} c^{2} d^{3} e^{6} - a^{3} c d e^{8}\right )} x^{3} + {\left (2 \, c^{4} d^{8} e - 5 \, a c^{3} d^{6} e^{3} + 3 \, a^{2} c^{2} d^{4} e^{5} + a^{3} c d^{2} e^{7} - a^{4} e^{9}\right )} x^{2} + {\left (c^{4} d^{9} - a c^{3} d^{7} e^{2} - 3 \, a^{2} c^{2} d^{5} e^{4} + 5 \, a^{3} c d^{3} e^{6} - 2 \, a^{4} d e^{8}\right )} x\right )}} \] Input:

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm=" 
fricas")
 

Output:

2/3*(6*a*c*d^3*e + 2*a^2*d*e^3 + 2*(c^2*d^3*e + 3*a*c*d*e^3)*x^2 + (3*c^2* 
d^4 + 10*a*c*d^2*e^2 + 3*a^2*e^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e 
^2)*x)/(a*c^3*d^8*e - 3*a^2*c^2*d^6*e^3 + 3*a^3*c*d^4*e^5 - a^4*d^2*e^7 + 
(c^4*d^7*e^2 - 3*a*c^3*d^5*e^4 + 3*a^2*c^2*d^3*e^6 - a^3*c*d*e^8)*x^3 + (2 
*c^4*d^8*e - 5*a*c^3*d^6*e^3 + 3*a^2*c^2*d^4*e^5 + a^3*c*d^2*e^7 - a^4*e^9 
)*x^2 + (c^4*d^9 - a*c^3*d^7*e^2 - 3*a^2*c^2*d^5*e^4 + 5*a^3*c*d^3*e^6 - 2 
*a^4*d*e^8)*x)
 

Sympy [F]

\[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int \frac {x}{\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \left (d + e x\right )}\, dx \] Input:

integrate(x/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)
                                                                                    
                                                                                    
 

Output:

Integral(x/(((d + e*x)*(a*e + c*d*x))**(3/2)*(d + e*x)), x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm=" 
maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assume 
?` for mor
 

Giac [F]

\[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\int { \frac {x}{{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}} {\left (e x + d\right )}} \,d x } \] Input:

integrate(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm=" 
giac")
 

Output:

integrate(x/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(e*x + d)), x)
 

Mupad [B] (verification not implemented)

Time = 6.60 (sec) , antiderivative size = 499, normalized size of antiderivative = 3.62 \[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {4\,a^2\,d\,e^3\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}+6\,a^2\,e^4\,x\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}+6\,c^2\,d^4\,x\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}+4\,c^2\,d^3\,e\,x^2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}+12\,a\,c\,d^3\,e\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}+20\,a\,c\,d^2\,e^2\,x\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}+12\,a\,c\,d\,e^3\,x^2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{-3\,a^4\,d^2\,e^7-6\,a^4\,d\,e^8\,x-3\,a^4\,e^9\,x^2+9\,a^3\,c\,d^4\,e^5+15\,a^3\,c\,d^3\,e^6\,x+3\,a^3\,c\,d^2\,e^7\,x^2-3\,a^3\,c\,d\,e^8\,x^3-9\,a^2\,c^2\,d^6\,e^3-9\,a^2\,c^2\,d^5\,e^4\,x+9\,a^2\,c^2\,d^4\,e^5\,x^2+9\,a^2\,c^2\,d^3\,e^6\,x^3+3\,a\,c^3\,d^8\,e-3\,a\,c^3\,d^7\,e^2\,x-15\,a\,c^3\,d^6\,e^3\,x^2-9\,a\,c^3\,d^5\,e^4\,x^3+3\,c^4\,d^9\,x+6\,c^4\,d^8\,e\,x^2+3\,c^4\,d^7\,e^2\,x^3} \] Input:

int(x/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)),x)
 

Output:

(4*a^2*d*e^3*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2) + 6*a^2*e^4*x*( 
x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2) + 6*c^2*d^4*x*(x*(a*e^2 + c*d 
^2) + a*d*e + c*d*e*x^2)^(1/2) + 4*c^2*d^3*e*x^2*(x*(a*e^2 + c*d^2) + a*d* 
e + c*d*e*x^2)^(1/2) + 12*a*c*d^3*e*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2 
)^(1/2) + 20*a*c*d^2*e^2*x*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2) + 
 12*a*c*d*e^3*x^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/(3*c^4*d^ 
9*x - 3*a^4*d^2*e^7 - 3*a^4*e^9*x^2 + 9*a^3*c*d^4*e^5 + 6*c^4*d^8*e*x^2 - 
9*a^2*c^2*d^6*e^3 + 3*c^4*d^7*e^2*x^3 + 3*a*c^3*d^8*e - 6*a^4*d*e^8*x + 9* 
a^2*c^2*d^4*e^5*x^2 + 9*a^2*c^2*d^3*e^6*x^3 - 3*a*c^3*d^7*e^2*x + 15*a^3*c 
*d^3*e^6*x - 3*a^3*c*d*e^8*x^3 - 9*a^2*c^2*d^5*e^4*x - 15*a*c^3*d^6*e^3*x^ 
2 + 3*a^3*c*d^2*e^7*x^2 - 9*a*c^3*d^5*e^4*x^3)
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 420, normalized size of antiderivative = 3.04 \[ \int \frac {x}{(d+e x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx=\frac {4 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a \,d^{2} e^{2}+8 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a d \,e^{3} x +4 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, a \,e^{4} x^{2}+\frac {4 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c \,d^{4}}{3}+\frac {8 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c \,d^{3} e x}{3}+\frac {4 \sqrt {e}\, \sqrt {d}\, \sqrt {c}\, \sqrt {c d x +a e}\, c \,d^{2} e^{2} x^{2}}{3}-\frac {4 \sqrt {e x +d}\, a^{2} d \,e^{4}}{3}-2 \sqrt {e x +d}\, a^{2} e^{5} x -4 \sqrt {e x +d}\, a c \,d^{3} e^{2}-\frac {20 \sqrt {e x +d}\, a c \,d^{2} e^{3} x}{3}-4 \sqrt {e x +d}\, a c d \,e^{4} x^{2}-2 \sqrt {e x +d}\, c^{2} d^{4} e x -\frac {4 \sqrt {e x +d}\, c^{2} d^{3} e^{2} x^{2}}{3}}{\sqrt {c d x +a e}\, e \left (a^{3} e^{8} x^{2}-3 a^{2} c \,d^{2} e^{6} x^{2}+3 a \,c^{2} d^{4} e^{4} x^{2}-c^{3} d^{6} e^{2} x^{2}+2 a^{3} d \,e^{7} x -6 a^{2} c \,d^{3} e^{5} x +6 a \,c^{2} d^{5} e^{3} x -2 c^{3} d^{7} e x +a^{3} d^{2} e^{6}-3 a^{2} c \,d^{4} e^{4}+3 a \,c^{2} d^{6} e^{2}-c^{3} d^{8}\right )} \] Input:

int(x/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)
 

Output:

(2*(6*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*d**2*e**2 + 12*sqrt(e)*s 
qrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*a*d*e**3*x + 6*sqrt(e)*sqrt(d)*sqrt(c)*sq 
rt(a*e + c*d*x)*a*e**4*x**2 + 2*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)* 
c*d**4 + 4*sqrt(e)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*c*d**3*e*x + 2*sqrt(e 
)*sqrt(d)*sqrt(c)*sqrt(a*e + c*d*x)*c*d**2*e**2*x**2 - 2*sqrt(d + e*x)*a** 
2*d*e**4 - 3*sqrt(d + e*x)*a**2*e**5*x - 6*sqrt(d + e*x)*a*c*d**3*e**2 - 1 
0*sqrt(d + e*x)*a*c*d**2*e**3*x - 6*sqrt(d + e*x)*a*c*d*e**4*x**2 - 3*sqrt 
(d + e*x)*c**2*d**4*e*x - 2*sqrt(d + e*x)*c**2*d**3*e**2*x**2))/(3*sqrt(a* 
e + c*d*x)*e*(a**3*d**2*e**6 + 2*a**3*d*e**7*x + a**3*e**8*x**2 - 3*a**2*c 
*d**4*e**4 - 6*a**2*c*d**3*e**5*x - 3*a**2*c*d**2*e**6*x**2 + 3*a*c**2*d** 
6*e**2 + 6*a*c**2*d**5*e**3*x + 3*a*c**2*d**4*e**4*x**2 - c**3*d**8 - 2*c* 
*3*d**7*e*x - c**3*d**6*e**2*x**2))