\(\int \frac {1}{(3-x^2-2 x^4)^{3/2}} \, dx\) [192]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 59 \[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=\frac {x \left (13+2 x^2\right )}{75 \sqrt {3-x^2-2 x^4}}-\frac {E\left (\arcsin (x)\left |-\frac {2}{3}\right .\right )}{25 \sqrt {3}}+\frac {\operatorname {EllipticF}\left (\arcsin (x),-\frac {2}{3}\right )}{5 \sqrt {3}} \] Output:

1/75*x*(2*x^2+13)/(-2*x^4-x^2+3)^(1/2)-1/75*EllipticE(x,1/3*I*6^(1/2))*3^( 
1/2)+1/15*EllipticF(x,1/3*I*6^(1/2))*3^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 8.92 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.68 \[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=\frac {1}{75} \left (\frac {13 x}{\sqrt {3-x^2-2 x^4}}+\frac {2 x^3}{\sqrt {3-x^2-2 x^4}}-i \sqrt {2} E\left (i \text {arcsinh}\left (\sqrt {\frac {2}{3}} x\right )|-\frac {3}{2}\right )-5 i \sqrt {2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {2}{3}} x\right ),-\frac {3}{2}\right )\right ) \] Input:

Integrate[(3 - x^2 - 2*x^4)^(-3/2),x]
 

Output:

((13*x)/Sqrt[3 - x^2 - 2*x^4] + (2*x^3)/Sqrt[3 - x^2 - 2*x^4] - I*Sqrt[2]* 
EllipticE[I*ArcSinh[Sqrt[2/3]*x], -3/2] - (5*I)*Sqrt[2]*EllipticF[I*ArcSin 
h[Sqrt[2/3]*x], -3/2])/75
 

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {1405, 27, 1494, 27, 399, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (-2 x^4-x^2+3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {x \left (2 x^2+13\right )}{75 \sqrt {-2 x^4-x^2+3}}-\frac {1}{75} \int -\frac {2 \left (6-x^2\right )}{\sqrt {-2 x^4-x^2+3}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{75} \int \frac {6-x^2}{\sqrt {-2 x^4-x^2+3}}dx+\frac {x \left (2 x^2+13\right )}{75 \sqrt {-2 x^4-x^2+3}}\)

\(\Big \downarrow \) 1494

\(\displaystyle \frac {4}{75} \sqrt {2} \int \frac {6-x^2}{2 \sqrt {2} \sqrt {1-x^2} \sqrt {2 x^2+3}}dx+\frac {x \left (2 x^2+13\right )}{75 \sqrt {-2 x^4-x^2+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{75} \int \frac {6-x^2}{\sqrt {1-x^2} \sqrt {2 x^2+3}}dx+\frac {x \left (2 x^2+13\right )}{75 \sqrt {-2 x^4-x^2+3}}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {2}{75} \left (\frac {15}{2} \int \frac {1}{\sqrt {1-x^2} \sqrt {2 x^2+3}}dx-\frac {1}{2} \int \frac {\sqrt {2 x^2+3}}{\sqrt {1-x^2}}dx\right )+\frac {x \left (2 x^2+13\right )}{75 \sqrt {-2 x^4-x^2+3}}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {2}{75} \left (\frac {5}{2} \sqrt {3} \operatorname {EllipticF}\left (\arcsin (x),-\frac {2}{3}\right )-\frac {1}{2} \int \frac {\sqrt {2 x^2+3}}{\sqrt {1-x^2}}dx\right )+\frac {x \left (2 x^2+13\right )}{75 \sqrt {-2 x^4-x^2+3}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {2}{75} \left (\frac {5}{2} \sqrt {3} \operatorname {EllipticF}\left (\arcsin (x),-\frac {2}{3}\right )-\frac {1}{2} \sqrt {3} E\left (\arcsin (x)\left |-\frac {2}{3}\right .\right )\right )+\frac {x \left (2 x^2+13\right )}{75 \sqrt {-2 x^4-x^2+3}}\)

Input:

Int[(3 - x^2 - 2*x^4)^(-3/2),x]
 

Output:

(x*(13 + 2*x^2))/(75*Sqrt[3 - x^2 - 2*x^4]) + (2*(-1/2*(Sqrt[3]*EllipticE[ 
ArcSin[x], -2/3]) + (5*Sqrt[3]*EllipticF[ArcSin[x], -2/3])/2))/75
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1494
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*Sqrt[-c]   Int[(d + e*x^2)/(Sqr 
t[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c, d, e 
}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[c, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 120 vs. \(2 (51 ) = 102\).

Time = 2.28 (sec) , antiderivative size = 121, normalized size of antiderivative = 2.05

method result size
risch \(\frac {x \left (2 x^{2}+13\right )}{75 \sqrt {-2 x^{4}-x^{2}+3}}+\frac {4 \sqrt {-x^{2}+1}\, \sqrt {6 x^{2}+9}\, \operatorname {EllipticF}\left (x , \frac {i \sqrt {6}}{3}\right )}{75 \sqrt {-2 x^{4}-x^{2}+3}}+\frac {\sqrt {-x^{2}+1}\, \sqrt {6 x^{2}+9}\, \left (\operatorname {EllipticF}\left (x , \frac {i \sqrt {6}}{3}\right )-\operatorname {EllipticE}\left (x , \frac {i \sqrt {6}}{3}\right )\right )}{75 \sqrt {-2 x^{4}-x^{2}+3}}\) \(121\)
default \(\frac {\frac {13}{75} x +\frac {2}{75} x^{3}}{\sqrt {-2 x^{4}-x^{2}+3}}+\frac {4 \sqrt {-x^{2}+1}\, \sqrt {6 x^{2}+9}\, \operatorname {EllipticF}\left (x , \frac {i \sqrt {6}}{3}\right )}{75 \sqrt {-2 x^{4}-x^{2}+3}}+\frac {\sqrt {-x^{2}+1}\, \sqrt {6 x^{2}+9}\, \left (\operatorname {EllipticF}\left (x , \frac {i \sqrt {6}}{3}\right )-\operatorname {EllipticE}\left (x , \frac {i \sqrt {6}}{3}\right )\right )}{75 \sqrt {-2 x^{4}-x^{2}+3}}\) \(122\)
elliptic \(\frac {\frac {13}{75} x +\frac {2}{75} x^{3}}{\sqrt {-2 x^{4}-x^{2}+3}}+\frac {4 \sqrt {-x^{2}+1}\, \sqrt {6 x^{2}+9}\, \operatorname {EllipticF}\left (x , \frac {i \sqrt {6}}{3}\right )}{75 \sqrt {-2 x^{4}-x^{2}+3}}+\frac {\sqrt {-x^{2}+1}\, \sqrt {6 x^{2}+9}\, \left (\operatorname {EllipticF}\left (x , \frac {i \sqrt {6}}{3}\right )-\operatorname {EllipticE}\left (x , \frac {i \sqrt {6}}{3}\right )\right )}{75 \sqrt {-2 x^{4}-x^{2}+3}}\) \(122\)

Input:

int(1/(-2*x^4-x^2+3)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/75*x*(2*x^2+13)/(-2*x^4-x^2+3)^(1/2)+4/75*(-x^2+1)^(1/2)*(6*x^2+9)^(1/2) 
/(-2*x^4-x^2+3)^(1/2)*EllipticF(x,1/3*I*6^(1/2))+1/75*(-x^2+1)^(1/2)*(6*x^ 
2+9)^(1/2)/(-2*x^4-x^2+3)^(1/2)*(EllipticF(x,1/3*I*6^(1/2))-EllipticE(x,1/ 
3*I*6^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.29 \[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=-\frac {\sqrt {3} {\left (2 \, x^{4} + x^{2} - 3\right )} E(\arcsin \left (x\right )\,|\,-\frac {2}{3}) - 5 \, \sqrt {3} {\left (2 \, x^{4} + x^{2} - 3\right )} F(\arcsin \left (x\right )\,|\,-\frac {2}{3}) + \sqrt {-2 \, x^{4} - x^{2} + 3} {\left (2 \, x^{3} + 13 \, x\right )}}{75 \, {\left (2 \, x^{4} + x^{2} - 3\right )}} \] Input:

integrate(1/(-2*x^4-x^2+3)^(3/2),x, algorithm="fricas")
 

Output:

-1/75*(sqrt(3)*(2*x^4 + x^2 - 3)*elliptic_e(arcsin(x), -2/3) - 5*sqrt(3)*( 
2*x^4 + x^2 - 3)*elliptic_f(arcsin(x), -2/3) + sqrt(-2*x^4 - x^2 + 3)*(2*x 
^3 + 13*x))/(2*x^4 + x^2 - 3)
 

Sympy [F]

\[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (- 2 x^{4} - x^{2} + 3\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(-2*x**4-x**2+3)**(3/2),x)
 

Output:

Integral((-2*x**4 - x**2 + 3)**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-2 \, x^{4} - x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(-2*x^4-x^2+3)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((-2*x^4 - x^2 + 3)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-2 \, x^{4} - x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(-2*x^4-x^2+3)^(3/2),x, algorithm="giac")
 

Output:

integrate((-2*x^4 - x^2 + 3)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (-2\,x^4-x^2+3\right )}^{3/2}} \,d x \] Input:

int(1/(3 - 2*x^4 - x^2)^(3/2),x)
 

Output:

int(1/(3 - 2*x^4 - x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (3-x^2-2 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {-2 x^{4}-x^{2}+3}}{4 x^{8}+4 x^{6}-11 x^{4}-6 x^{2}+9}d x \] Input:

int(1/(-2*x^4-x^2+3)^(3/2),x)
 

Output:

int(sqrt( - 2*x**4 - x**2 + 3)/(4*x**8 + 4*x**6 - 11*x**4 - 6*x**2 + 9),x)