\(\int \frac {1}{(3-2 x^2-2 x^4)^{3/2}} \, dx\) [193]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 121 \[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=\frac {x \left (4+x^2\right )}{21 \sqrt {3-2 x^2-2 x^4}}-\frac {1}{42} \sqrt {1+\sqrt {7}} E\left (\arcsin \left (\sqrt {\frac {2}{-1+\sqrt {7}}} x\right )|\frac {1}{3} \left (-4+\sqrt {7}\right )\right )+\frac {1}{6} \sqrt {\frac {1}{7} \left (1+\sqrt {7}\right )} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{-1+\sqrt {7}}} x\right ),\frac {1}{3} \left (-4+\sqrt {7}\right )\right ) \] Output:

1/21*x*(x^2+4)/(-2*x^4-2*x^2+3)^(1/2)-1/42*(1+7^(1/2))^(1/2)*EllipticE(2^( 
1/2)/(-1+7^(1/2))^(1/2)*x,1/6*I*42^(1/2)-1/6*I*6^(1/2))+1/42*(7+7*7^(1/2)) 
^(1/2)*EllipticF(2^(1/2)/(-1+7^(1/2))^(1/2)*x,1/6*I*42^(1/2)-1/6*I*6^(1/2) 
)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 9.33 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.14 \[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=\frac {1}{42} \left (\frac {2 x \left (4+x^2\right )}{\sqrt {3-2 x^2-2 x^4}}-i \sqrt {-1+\sqrt {7}} E\left (i \text {arcsinh}\left (\sqrt {\frac {2}{1+\sqrt {7}}} x\right )|-\frac {4}{3}-\frac {\sqrt {7}}{3}\right )+\frac {i \left (-7+\sqrt {7}\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {2}{1+\sqrt {7}}} x\right ),-\frac {4}{3}-\frac {\sqrt {7}}{3}\right )}{\sqrt {-1+\sqrt {7}}}\right ) \] Input:

Integrate[(3 - 2*x^2 - 2*x^4)^(-3/2),x]
 

Output:

((2*x*(4 + x^2))/Sqrt[3 - 2*x^2 - 2*x^4] - I*Sqrt[-1 + Sqrt[7]]*EllipticE[ 
I*ArcSinh[Sqrt[2/(1 + Sqrt[7])]*x], -4/3 - Sqrt[7]/3] + (I*(-7 + Sqrt[7])* 
EllipticF[I*ArcSinh[Sqrt[2/(1 + Sqrt[7])]*x], -4/3 - Sqrt[7]/3])/Sqrt[-1 + 
 Sqrt[7]])/42
 

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.16, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {1405, 27, 1494, 27, 399, 321, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (-2 x^4-2 x^2+3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {x \left (x^2+4\right )}{21 \sqrt {-2 x^4-2 x^2+3}}-\frac {1}{84} \int -\frac {4 \left (3-x^2\right )}{\sqrt {-2 x^4-2 x^2+3}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{21} \int \frac {3-x^2}{\sqrt {-2 x^4-2 x^2+3}}dx+\frac {x \left (x^2+4\right )}{21 \sqrt {-2 x^4-2 x^2+3}}\)

\(\Big \downarrow \) 1494

\(\displaystyle \frac {2}{21} \sqrt {2} \int \frac {3-x^2}{2 \sqrt {-2 x^2+\sqrt {7}-1} \sqrt {2 x^2+\sqrt {7}+1}}dx+\frac {x \left (x^2+4\right )}{21 \sqrt {-2 x^4-2 x^2+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{21} \sqrt {2} \int \frac {3-x^2}{\sqrt {-2 x^2+\sqrt {7}-1} \sqrt {2 x^2+\sqrt {7}+1}}dx+\frac {x \left (x^2+4\right )}{21 \sqrt {-2 x^4-2 x^2+3}}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {1}{21} \sqrt {2} \left (\frac {1}{2} \left (7+\sqrt {7}\right ) \int \frac {1}{\sqrt {-2 x^2+\sqrt {7}-1} \sqrt {2 x^2+\sqrt {7}+1}}dx-\frac {1}{2} \int \frac {\sqrt {2 x^2+\sqrt {7}+1}}{\sqrt {-2 x^2+\sqrt {7}-1}}dx\right )+\frac {x \left (x^2+4\right )}{21 \sqrt {-2 x^4-2 x^2+3}}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {1}{21} \sqrt {2} \left (\frac {\left (7+\sqrt {7}\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{-1+\sqrt {7}}} x\right ),\frac {1}{3} \left (-4+\sqrt {7}\right )\right )}{2 \sqrt {2 \left (1+\sqrt {7}\right )}}-\frac {1}{2} \int \frac {\sqrt {2 x^2+\sqrt {7}+1}}{\sqrt {-2 x^2+\sqrt {7}-1}}dx\right )+\frac {x \left (x^2+4\right )}{21 \sqrt {-2 x^4-2 x^2+3}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {1}{21} \sqrt {2} \left (\frac {\left (7+\sqrt {7}\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {2}{-1+\sqrt {7}}} x\right ),\frac {1}{3} \left (-4+\sqrt {7}\right )\right )}{2 \sqrt {2 \left (1+\sqrt {7}\right )}}-\frac {1}{2} \sqrt {\frac {1}{2} \left (1+\sqrt {7}\right )} E\left (\arcsin \left (\sqrt {\frac {2}{-1+\sqrt {7}}} x\right )|\frac {1}{3} \left (-4+\sqrt {7}\right )\right )\right )+\frac {x \left (x^2+4\right )}{21 \sqrt {-2 x^4-2 x^2+3}}\)

Input:

Int[(3 - 2*x^2 - 2*x^4)^(-3/2),x]
 

Output:

(x*(4 + x^2))/(21*Sqrt[3 - 2*x^2 - 2*x^4]) + (Sqrt[2]*(-1/2*(Sqrt[(1 + Sqr 
t[7])/2]*EllipticE[ArcSin[Sqrt[2/(-1 + Sqrt[7])]*x], (-4 + Sqrt[7])/3]) + 
((7 + Sqrt[7])*EllipticF[ArcSin[Sqrt[2/(-1 + Sqrt[7])]*x], (-4 + Sqrt[7])/ 
3])/(2*Sqrt[2*(1 + Sqrt[7])])))/21
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1494
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*Sqrt[-c]   Int[(d + e*x^2)/(Sqr 
t[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c, d, e 
}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[c, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 227 vs. \(2 (95 ) = 190\).

Time = 2.31 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.88

method result size
risch \(\frac {x \left (x^{2}+4\right )}{21 \sqrt {-2 x^{4}-2 x^{2}+3}}+\frac {3 \sqrt {1-\left (\frac {1}{3}+\frac {\sqrt {7}}{3}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{3}-\frac {\sqrt {7}}{3}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )}{7 \sqrt {3+3 \sqrt {7}}\, \sqrt {-2 x^{4}-2 x^{2}+3}}+\frac {6 \sqrt {1-\left (\frac {1}{3}+\frac {\sqrt {7}}{3}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{3}-\frac {\sqrt {7}}{3}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )-\operatorname {EllipticE}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )\right )}{7 \sqrt {3+3 \sqrt {7}}\, \sqrt {-2 x^{4}-2 x^{2}+3}\, \left (-2+2 \sqrt {7}\right )}\) \(228\)
default \(\frac {\frac {4}{21} x +\frac {1}{21} x^{3}}{\sqrt {-2 x^{4}-2 x^{2}+3}}+\frac {3 \sqrt {1-\left (\frac {1}{3}+\frac {\sqrt {7}}{3}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{3}-\frac {\sqrt {7}}{3}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )}{7 \sqrt {3+3 \sqrt {7}}\, \sqrt {-2 x^{4}-2 x^{2}+3}}+\frac {6 \sqrt {1-\left (\frac {1}{3}+\frac {\sqrt {7}}{3}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{3}-\frac {\sqrt {7}}{3}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )-\operatorname {EllipticE}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )\right )}{7 \sqrt {3+3 \sqrt {7}}\, \sqrt {-2 x^{4}-2 x^{2}+3}\, \left (-2+2 \sqrt {7}\right )}\) \(231\)
elliptic \(\frac {\frac {4}{21} x +\frac {1}{21} x^{3}}{\sqrt {-2 x^{4}-2 x^{2}+3}}+\frac {3 \sqrt {1-\left (\frac {1}{3}+\frac {\sqrt {7}}{3}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{3}-\frac {\sqrt {7}}{3}\right ) x^{2}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )}{7 \sqrt {3+3 \sqrt {7}}\, \sqrt {-2 x^{4}-2 x^{2}+3}}+\frac {6 \sqrt {1-\left (\frac {1}{3}+\frac {\sqrt {7}}{3}\right ) x^{2}}\, \sqrt {1-\left (\frac {1}{3}-\frac {\sqrt {7}}{3}\right ) x^{2}}\, \left (\operatorname {EllipticF}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )-\operatorname {EllipticE}\left (\frac {\sqrt {3+3 \sqrt {7}}\, x}{3}, \frac {i \sqrt {42}}{6}-\frac {i \sqrt {6}}{6}\right )\right )}{7 \sqrt {3+3 \sqrt {7}}\, \sqrt {-2 x^{4}-2 x^{2}+3}\, \left (-2+2 \sqrt {7}\right )}\) \(231\)

Input:

int(1/(-2*x^4-2*x^2+3)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/21*x*(x^2+4)/(-2*x^4-2*x^2+3)^(1/2)+3/7/(3+3*7^(1/2))^(1/2)*(1-(1/3+1/3* 
7^(1/2))*x^2)^(1/2)*(1-(1/3-1/3*7^(1/2))*x^2)^(1/2)/(-2*x^4-2*x^2+3)^(1/2) 
*EllipticF(1/3*(3+3*7^(1/2))^(1/2)*x,1/6*I*42^(1/2)-1/6*I*6^(1/2))+6/7/(3+ 
3*7^(1/2))^(1/2)*(1-(1/3+1/3*7^(1/2))*x^2)^(1/2)*(1-(1/3-1/3*7^(1/2))*x^2) 
^(1/2)/(-2*x^4-2*x^2+3)^(1/2)/(-2+2*7^(1/2))*(EllipticF(1/3*(3+3*7^(1/2))^ 
(1/2)*x,1/6*I*42^(1/2)-1/6*I*6^(1/2))-EllipticE(1/3*(3+3*7^(1/2))^(1/2)*x, 
1/6*I*42^(1/2)-1/6*I*6^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.45 \[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=-\frac {{\left (\sqrt {7} \sqrt {3} {\left (2 \, x^{4} + 2 \, x^{2} - 3\right )} + \sqrt {3} {\left (2 \, x^{4} + 2 \, x^{2} - 3\right )}\right )} \sqrt {\frac {1}{3} \, \sqrt {7} + \frac {1}{3}} E(\arcsin \left (x \sqrt {\frac {1}{3} \, \sqrt {7} + \frac {1}{3}}\right )\,|\,\frac {1}{3} \, \sqrt {7} - \frac {4}{3}) - 2 \, {\left (2 \, \sqrt {7} \sqrt {3} {\left (2 \, x^{4} + 2 \, x^{2} - 3\right )} - \sqrt {3} {\left (2 \, x^{4} + 2 \, x^{2} - 3\right )}\right )} \sqrt {\frac {1}{3} \, \sqrt {7} + \frac {1}{3}} F(\arcsin \left (x \sqrt {\frac {1}{3} \, \sqrt {7} + \frac {1}{3}}\right )\,|\,\frac {1}{3} \, \sqrt {7} - \frac {4}{3}) + 6 \, \sqrt {-2 \, x^{4} - 2 \, x^{2} + 3} {\left (x^{3} + 4 \, x\right )}}{126 \, {\left (2 \, x^{4} + 2 \, x^{2} - 3\right )}} \] Input:

integrate(1/(-2*x^4-2*x^2+3)^(3/2),x, algorithm="fricas")
 

Output:

-1/126*((sqrt(7)*sqrt(3)*(2*x^4 + 2*x^2 - 3) + sqrt(3)*(2*x^4 + 2*x^2 - 3) 
)*sqrt(1/3*sqrt(7) + 1/3)*elliptic_e(arcsin(x*sqrt(1/3*sqrt(7) + 1/3)), 1/ 
3*sqrt(7) - 4/3) - 2*(2*sqrt(7)*sqrt(3)*(2*x^4 + 2*x^2 - 3) - sqrt(3)*(2*x 
^4 + 2*x^2 - 3))*sqrt(1/3*sqrt(7) + 1/3)*elliptic_f(arcsin(x*sqrt(1/3*sqrt 
(7) + 1/3)), 1/3*sqrt(7) - 4/3) + 6*sqrt(-2*x^4 - 2*x^2 + 3)*(x^3 + 4*x))/ 
(2*x^4 + 2*x^2 - 3)
 

Sympy [F]

\[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=\int \frac {1}{\left (- 2 x^{4} - 2 x^{2} + 3\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(-2*x**4-2*x**2+3)**(3/2),x)
 

Output:

Integral((-2*x**4 - 2*x**2 + 3)**(-3/2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-2 \, x^{4} - 2 \, x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(-2*x^4-2*x^2+3)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate((-2*x^4 - 2*x^2 + 3)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (-2 \, x^{4} - 2 \, x^{2} + 3\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(-2*x^4-2*x^2+3)^(3/2),x, algorithm="giac")
 

Output:

integrate((-2*x^4 - 2*x^2 + 3)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=\int \frac {1}{{\left (-2\,x^4-2\,x^2+3\right )}^{3/2}} \,d x \] Input:

int(1/(3 - 2*x^4 - 2*x^2)^(3/2),x)
 

Output:

int(1/(3 - 2*x^4 - 2*x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (3-2 x^2-2 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {-2 x^{4}-2 x^{2}+3}}{4 x^{8}+8 x^{6}-8 x^{4}-12 x^{2}+9}d x \] Input:

int(1/(-2*x^4-2*x^2+3)^(3/2),x)
 

Output:

int(sqrt( - 2*x**4 - 2*x**2 + 3)/(4*x**8 + 8*x**6 - 8*x**4 - 12*x**2 + 9), 
x)