\(\int \frac {x^4}{(a+b x^2+c x^4)^{3/2}} \, dx\) [1017]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 342 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {b x \sqrt {a+b x^2+c x^4}}{\sqrt {c} \left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {\sqrt [4]{a} b \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{c^{3/4} \left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \left (b-2 \sqrt {a} \sqrt {c}\right ) c^{3/4} \sqrt {a+b x^2+c x^4}} \] Output:

x*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)-b*x*(c*x^4+b*x^2+a)^(1/2) 
/c^(1/2)/(-4*a*c+b^2)/(a^(1/2)+c^(1/2)*x^2)+a^(1/4)*b*(a^(1/2)+c^(1/2)*x^2 
)*((c*x^4+b*x^2+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2*arctan(c 
^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))/c^(3/4)/(-4*a*c+b^2)/( 
c*x^4+b*x^2+a)^(1/2)-1/2*a^(1/4)*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+b*x^2+a)/(a 
^(1/2)+c^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1/4)*x/a^(1/4)),1 
/2*(2-b/a^(1/2)/c^(1/2))^(1/2))/(b-2*a^(1/2)*c^(1/2))/c^(3/4)/(c*x^4+b*x^2 
+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.58 (sec) , antiderivative size = 452, normalized size of antiderivative = 1.32 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {4 c \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x \left (2 a+b x^2\right )-i b \left (-b+\sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )+i \left (-b^2+4 a c+b \sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{4 c \left (b^2-4 a c\right ) \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {a+b x^2+c x^4}} \] Input:

Integrate[x^4/(a + b*x^2 + c*x^4)^(3/2),x]
 

Output:

(4*c*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*(2*a + b*x^2) - I*b*(-b + Sqrt[b^2 
- 4*a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]* 
Sqrt[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Ellipt 
icE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 
4*a*c])/(b - Sqrt[b^2 - 4*a*c])] + I*(-b^2 + 4*a*c + b*Sqrt[b^2 - 4*a*c])* 
Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[(2*b 
- 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcS 
inh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b 
 - Sqrt[b^2 - 4*a*c])])/(4*c*(b^2 - 4*a*c)*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])] 
*Sqrt[a + b*x^2 + c*x^4])
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 336, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1440, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1440

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\int \frac {b x^2+2 a}{\sqrt {c x^4+b x^2+a}}dx}{b^2-4 a c}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {\sqrt {a} b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}}{b^2-4 a c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\sqrt {a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-\frac {b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}}{b^2-4 a c}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\frac {\sqrt [4]{a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {b \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{\sqrt {c}}}{b^2-4 a c}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {x \left (2 a+b x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}-\frac {\frac {\sqrt [4]{a} \left (2 \sqrt {a}+\frac {b}{\sqrt {c}}\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {b \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{\sqrt {c}}}{b^2-4 a c}\)

Input:

Int[x^4/(a + b*x^2 + c*x^4)^(3/2),x]
 

Output:

(x*(2*a + b*x^2))/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4]) - (-((b*(-((x*Sq 
rt[a + b*x^2 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*(Sqrt[a] + Sqrt 
[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*A 
rcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(c^(1/4)*Sqrt[a 
+ b*x^2 + c*x^4])))/Sqrt[c]) + (a^(1/4)*(2*Sqrt[a] + b/Sqrt[c])*(Sqrt[a] + 
 Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*Elliptic 
F[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*c^(1/4)* 
Sqrt[a + b*x^2 + c*x^4]))/(b^2 - 4*a*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1440
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[(-d^3)*(d*x)^(m - 3)*(2*a + b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2* 
(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x 
)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), 
x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && Gt 
Q[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
Maple [A] (verified)

Time = 1.39 (sec) , antiderivative size = 450, normalized size of antiderivative = 1.32

method result size
default \(-\frac {2 c \left (\frac {b \,x^{3}}{2 \left (4 a c -b^{2}\right ) c}+\frac {a x}{c \left (4 a c -b^{2}\right )}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(450\)
elliptic \(-\frac {2 c \left (\frac {b \,x^{3}}{2 \left (4 a c -b^{2}\right ) c}+\frac {a x}{c \left (4 a c -b^{2}\right )}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}+\frac {a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}-\frac {b a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(450\)

Input:

int(x^4/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2*c*(1/2*b/(4*a*c-b^2)/c*x^3+a/c/(4*a*c-b^2)*x)/((x^4+1/c*b*x^2+1/c*a)*c) 
^(1/2)+1/2*a/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(- 
b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2 
)/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a 
)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-1/2*b/(4*a*c-b^2)*a 
*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a* 
x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/ 
(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a 
)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^( 
1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/ 
a/c)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 449, normalized size of antiderivative = 1.31 \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=-\frac {\sqrt {\frac {1}{2}} {\left (b^{2} c x^{4} + b^{3} x^{2} + a b^{2} - {\left (a b c x^{4} + a b^{2} x^{2} + a^{2} b\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left ({\left (2 \, a b + b^{2}\right )} c x^{4} + 2 \, a^{2} b + a b^{2} + {\left (2 \, a b^{2} + b^{3}\right )} x^{2} + {\left ({\left (2 \, a^{2} - a b\right )} c x^{4} + 2 \, a^{3} - a^{2} b + {\left (2 \, a^{2} b - a b^{2}\right )} x^{2}\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - 2 \, {\left (a b c x^{3} + 2 \, a^{2} c x\right )} \sqrt {c x^{4} + b x^{2} + a}}{2 \, {\left (a^{2} b^{2} c - 4 \, a^{3} c^{2} + {\left (a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} x^{4} + {\left (a b^{3} c - 4 \, a^{2} b c^{2}\right )} x^{2}\right )}} \] Input:

integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")
 

Output:

-1/2*(sqrt(1/2)*(b^2*c*x^4 + b^3*x^2 + a*b^2 - (a*b*c*x^4 + a*b^2*x^2 + a^ 
2*b)*sqrt((b^2 - 4*a*c)/a^2))*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b) 
/a)*elliptic_e(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)) 
, 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) - sqrt(1/2)*((2*a 
*b + b^2)*c*x^4 + 2*a^2*b + a*b^2 + (2*a*b^2 + b^3)*x^2 + ((2*a^2 - a*b)*c 
*x^4 + 2*a^3 - a^2*b + (2*a^2*b - a*b^2)*x^2)*sqrt((b^2 - 4*a*c)/a^2))*sqr 
t(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_f(arcsin(sqrt(1/2)*x 
*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2 
) + b^2 - 2*a*c)/(a*c)) - 2*(a*b*c*x^3 + 2*a^2*c*x)*sqrt(c*x^4 + b*x^2 + a 
))/(a^2*b^2*c - 4*a^3*c^2 + (a*b^2*c^2 - 4*a^2*c^3)*x^4 + (a*b^3*c - 4*a^2 
*b*c^2)*x^2)
 

Sympy [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{4}}{\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(x**4/(c*x**4+b*x**2+a)**(3/2),x)
 

Output:

Integral(x**4/(a + b*x**2 + c*x**4)**(3/2), x)
 

Maxima [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{4}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate(x^4/(c*x^4 + b*x^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{4}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^4/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")
 

Output:

integrate(x^4/(c*x^4 + b*x^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^4}{{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \] Input:

int(x^4/(a + b*x^2 + c*x^4)^(3/2),x)
 

Output:

int(x^4/(a + b*x^2 + c*x^4)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^4}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {-\sqrt {c \,x^{4}+b \,x^{2}+a}\, x +\left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a^{2}+\left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a b \,x^{2}+\left (\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \right ) a c \,x^{4}}{c \left (c \,x^{4}+b \,x^{2}+a \right )} \] Input:

int(x^4/(c*x^4+b*x^2+a)^(3/2),x)
 

Output:

( - sqrt(a + b*x**2 + c*x**4)*x + int(sqrt(a + b*x**2 + c*x**4)/(a**2 + 2* 
a*b*x**2 + 2*a*c*x**4 + b**2*x**4 + 2*b*c*x**6 + c**2*x**8),x)*a**2 + int( 
sqrt(a + b*x**2 + c*x**4)/(a**2 + 2*a*b*x**2 + 2*a*c*x**4 + b**2*x**4 + 2* 
b*c*x**6 + c**2*x**8),x)*a*b*x**2 + int(sqrt(a + b*x**2 + c*x**4)/(a**2 + 
2*a*b*x**2 + 2*a*c*x**4 + b**2*x**4 + 2*b*c*x**6 + c**2*x**8),x)*a*c*x**4) 
/(c*(a + b*x**2 + c*x**4))