\(\int \frac {x^2}{(a+b x^2+c x^4)^{3/2}} \, dx\) [1018]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 341 \[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=-\frac {x \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}+\frac {2 \sqrt {c} x \sqrt {a+b x^2+c x^4}}{\left (b^2-4 a c\right ) \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {2 \sqrt [4]{a} \sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}+\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \left (b-2 \sqrt {a} \sqrt {c}\right ) \sqrt [4]{c} \sqrt {a+b x^2+c x^4}} \] Output:

-x*(2*c*x^2+b)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)^(1/2)+2*c^(1/2)*x*(c*x^4+b*x^2 
+a)^(1/2)/(-4*a*c+b^2)/(a^(1/2)+c^(1/2)*x^2)-2*a^(1/4)*c^(1/4)*(a^(1/2)+c^ 
(1/2)*x^2)*((c*x^4+b*x^2+a)/(a^(1/2)+c^(1/2)*x^2)^2)^(1/2)*EllipticE(sin(2 
*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))/(-4*a*c+b^2)/ 
(c*x^4+b*x^2+a)^(1/2)+1/2*(a^(1/2)+c^(1/2)*x^2)*((c*x^4+b*x^2+a)/(a^(1/2)+ 
c^(1/2)*x^2)^2)^(1/2)*InverseJacobiAM(2*arctan(c^(1/4)*x/a^(1/4)),1/2*(2-b 
/a^(1/2)/c^(1/2))^(1/2))/a^(1/4)/(b-2*a^(1/2)*c^(1/2))/c^(1/4)/(c*x^4+b*x^ 
2+a)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.56 (sec) , antiderivative size = 437, normalized size of antiderivative = 1.28 \[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {-2 \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x \left (b+2 c x^2\right )+i \left (-b+\sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {\frac {2 b-2 \sqrt {b^2-4 a c}+4 c x^2}{b-\sqrt {b^2-4 a c}}} E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-i \sqrt {2} \sqrt {b^2-4 a c} \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )}{2 \left (b^2-4 a c\right ) \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} \sqrt {a+b x^2+c x^4}} \] Input:

Integrate[x^2/(a + b*x^2 + c*x^4)^(3/2),x]
 

Output:

(-2*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x*(b + 2*c*x^2) + I*(-b + Sqrt[b^2 - 4 
*a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*Sqr 
t[(2*b - 2*Sqrt[b^2 - 4*a*c] + 4*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*EllipticE 
[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a 
*c])/(b - Sqrt[b^2 - 4*a*c])] - I*Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[(b - Sqrt 
[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a 
*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c 
/(b + Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a* 
c])])/(2*(b^2 - 4*a*c)*Sqrt[c/(b + Sqrt[b^2 - 4*a*c])]*Sqrt[a + b*x^2 + c* 
x^4])
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 333, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1439, 1511, 27, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1439

\(\displaystyle \frac {\int \frac {2 c x^2+b}{\sqrt {c x^4+b x^2+a}}dx}{b^2-4 a c}-\frac {x \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {\left (2 \sqrt {a} \sqrt {c}+b\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-2 \sqrt {a} \sqrt {c} \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {a} \sqrt {c x^4+b x^2+a}}dx}{b^2-4 a c}-\frac {x \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (2 \sqrt {a} \sqrt {c}+b\right ) \int \frac {1}{\sqrt {c x^4+b x^2+a}}dx-2 \sqrt {c} \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{b^2-4 a c}-\frac {x \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {\frac {\left (2 \sqrt {a} \sqrt {c}+b\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-2 \sqrt {c} \int \frac {\sqrt {a}-\sqrt {c} x^2}{\sqrt {c x^4+b x^2+a}}dx}{b^2-4 a c}-\frac {x \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {\frac {\left (2 \sqrt {a} \sqrt {c}+b\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 \sqrt [4]{a} \sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-2 \sqrt {c} \left (\frac {\sqrt [4]{a} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{\sqrt [4]{c} \sqrt {a+b x^2+c x^4}}-\frac {x \sqrt {a+b x^2+c x^4}}{\sqrt {a}+\sqrt {c} x^2}\right )}{b^2-4 a c}-\frac {x \left (b+2 c x^2\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4}}\)

Input:

Int[x^2/(a + b*x^2 + c*x^4)^(3/2),x]
 

Output:

-((x*(b + 2*c*x^2))/((b^2 - 4*a*c)*Sqrt[a + b*x^2 + c*x^4])) + (-2*Sqrt[c] 
*(-((x*Sqrt[a + b*x^2 + c*x^4])/(Sqrt[a] + Sqrt[c]*x^2)) + (a^(1/4)*(Sqrt[ 
a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*Elli 
pticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(c^(1/4 
)*Sqrt[a + b*x^2 + c*x^4])) + ((b + 2*Sqrt[a]*Sqrt[c])*(Sqrt[a] + Sqrt[c]* 
x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTa 
n[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(2*a^(1/4)*c^(1/4)*S 
qrt[a + b*x^2 + c*x^4]))/(b^2 - 4*a*c)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1439
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> Simp[d*(d*x)^(m - 1)*(b + 2*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 
1)*(b^2 - 4*a*c))), x] - Simp[d^2/(2*(p + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m 
- 2)*(b*(m - 1) + 2*c*(m + 4*p + 5)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x 
] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 
1] && LeQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
Maple [A] (verified)

Time = 0.98 (sec) , antiderivative size = 446, normalized size of antiderivative = 1.31

method result size
default \(-\frac {2 c \left (-\frac {x^{3}}{4 a c -b^{2}}-\frac {b x}{2 \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}-\frac {b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {c a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{\left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(446\)
elliptic \(-\frac {2 c \left (-\frac {x^{3}}{4 a c -b^{2}}-\frac {b x}{2 \left (4 a c -b^{2}\right ) c}\right )}{\sqrt {\left (x^{4}+\frac {b \,x^{2}}{c}+\frac {a}{c}\right ) c}}-\frac {b \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )}{4 \left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}}+\frac {c a \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (\operatorname {EllipticF}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-\operatorname {EllipticE}\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{\left (4 a c -b^{2}\right ) \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(446\)

Input:

int(x^2/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2*c*(-1/(4*a*c-b^2)*x^3-1/2*b/(4*a*c-b^2)/c*x)/((x^4+1/c*b*x^2+1/c*a)*c)^ 
(1/2)-1/4*b/(4*a*c-b^2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b 
+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2) 
/(c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a) 
^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))+c/(4*a*c-b^2)*a*2^(1 
/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)^ 
(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(- 
4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/ 
2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)* 
((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^ 
(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 450, normalized size of antiderivative = 1.32 \[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {2 \, \sqrt {\frac {1}{2}} {\left (b c^{2} x^{4} + b^{2} c x^{2} + a b c - {\left (a c^{2} x^{4} + a b c x^{2} + a^{2} c\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left ({\left (b^{2} c + 2 \, b c^{2}\right )} x^{4} + a b^{2} + 2 \, a b c + {\left (b^{3} + 2 \, b^{2} c\right )} x^{2} + {\left ({\left (a b c - 2 \, a c^{2}\right )} x^{4} + a^{2} b - 2 \, a^{2} c + {\left (a b^{2} - 2 \, a b c\right )} x^{2}\right )} \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}}\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - 2 \, {\left (2 \, a c^{2} x^{3} + a b c x\right )} \sqrt {c x^{4} + b x^{2} + a}}{2 \, {\left (a^{2} b^{2} c - 4 \, a^{3} c^{2} + {\left (a b^{2} c^{2} - 4 \, a^{2} c^{3}\right )} x^{4} + {\left (a b^{3} c - 4 \, a^{2} b c^{2}\right )} x^{2}\right )}} \] Input:

integrate(x^2/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")
 

Output:

1/2*(2*sqrt(1/2)*(b*c^2*x^4 + b^2*c*x^2 + a*b*c - (a*c^2*x^4 + a*b*c*x^2 + 
 a^2*c)*sqrt((b^2 - 4*a*c)/a^2))*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - 
 b)/a)*elliptic_e(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/ 
a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) - sqrt(1/2)*(( 
b^2*c + 2*b*c^2)*x^4 + a*b^2 + 2*a*b*c + (b^3 + 2*b^2*c)*x^2 + ((a*b*c - 2 
*a*c^2)*x^4 + a^2*b - 2*a^2*c + (a*b^2 - 2*a*b*c)*x^2)*sqrt((b^2 - 4*a*c)/ 
a^2))*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_f(arcsin(sq 
rt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4 
*a*c)/a^2) + b^2 - 2*a*c)/(a*c)) - 2*(2*a*c^2*x^3 + a*b*c*x)*sqrt(c*x^4 + 
b*x^2 + a))/(a^2*b^2*c - 4*a^3*c^2 + (a*b^2*c^2 - 4*a^2*c^3)*x^4 + (a*b^3* 
c - 4*a^2*b*c^2)*x^2)
 

Sympy [F]

\[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^{2}}{\left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(x**2/(c*x**4+b*x**2+a)**(3/2),x)
 

Output:

Integral(x**2/(a + b*x**2 + c*x**4)**(3/2), x)
 

Maxima [F]

\[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{2}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^2/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate(x^2/(c*x^4 + b*x^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x^{2}}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x^2/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")
 

Output:

integrate(x^2/(c*x^4 + b*x^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x^2}{{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \] Input:

int(x^2/(a + b*x^2 + c*x^4)^(3/2),x)
 

Output:

int(x^2/(a + b*x^2 + c*x^4)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x^2}{\left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {c \,x^{4}+b \,x^{2}+a}\, x^{2}}{c^{2} x^{8}+2 b c \,x^{6}+2 a c \,x^{4}+b^{2} x^{4}+2 a b \,x^{2}+a^{2}}d x \] Input:

int(x^2/(c*x^4+b*x^2+a)^(3/2),x)
 

Output:

int((sqrt(a + b*x**2 + c*x**4)*x**2)/(a**2 + 2*a*b*x**2 + 2*a*c*x**4 + b** 
2*x**4 + 2*b*c*x**6 + c**2*x**8),x)