\(\int \frac {x^{13/2}}{(b x^2+c x^4)^2} \, dx\) [131]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 165 \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}-\frac {3 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} \sqrt [4]{b} c^{7/4}}+\frac {3 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} \sqrt [4]{b} c^{7/4}}-\frac {3 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{4 \sqrt {2} \sqrt [4]{b} c^{7/4}} \] Output:

-1/2*x^(3/2)/c/(c*x^2+b)-3/8*arctan(1-2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^( 
1/2)/b^(1/4)/c^(7/4)+3/8*arctan(1+2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2) 
/b^(1/4)/c^(7/4)-3/8*arctanh(2^(1/2)*b^(1/4)*c^(1/4)*x^(1/2)/(b^(1/2)+c^(1 
/2)*x))*2^(1/2)/b^(1/4)/c^(7/4)
 

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.78 \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {-\frac {4 c^{3/4} x^{3/2}}{b+c x^2}-\frac {3 \sqrt {2} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )}{\sqrt [4]{b}}-\frac {3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{\sqrt [4]{b}}}{8 c^{7/4}} \] Input:

Integrate[x^(13/2)/(b*x^2 + c*x^4)^2,x]
 

Output:

((-4*c^(3/4)*x^(3/2))/(b + c*x^2) - (3*Sqrt[2]*ArcTan[(Sqrt[b] - Sqrt[c]*x 
)/(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])])/b^(1/4) - (3*Sqrt[2]*ArcTanh[(Sqrt[2 
]*b^(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/b^(1/4))/(8*c^(7/4))
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.46, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.579, Rules used = {9, 252, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^{5/2}}{\left (b+c x^2\right )^2}dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {3 \int \frac {\sqrt {x}}{c x^2+b}dx}{4 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {3 \int \frac {x}{c x^2+b}d\sqrt {x}}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {3 \left (\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \left (\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {3 \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {c}}\right )}{2 c}-\frac {x^{3/2}}{2 c \left (b+c x^2\right )}\)

Input:

Int[x^(13/2)/(b*x^2 + c*x^4)^2,x]
 

Output:

-1/2*x^(3/2)/(c*(b + c*x^2)) + (3*((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x]) 
/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x] 
)/b^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[c]) - (-1/2*Log[Sqrt[b] - Sq 
rt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt[2]*b^(1/4)*c^(1/4)) + Log 
[Sqrt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(2*Sqrt[2]*b^(1/4) 
*c^(1/4)))/(2*Sqrt[c])))/(2*c)
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.75

method result size
derivativedivides \(-\frac {x^{\frac {3}{2}}}{2 c \left (c \,x^{2}+b \right )}+\frac {3 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c^{2} \left (\frac {b}{c}\right )^{\frac {1}{4}}}\) \(124\)
default \(-\frac {x^{\frac {3}{2}}}{2 c \left (c \,x^{2}+b \right )}+\frac {3 \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c^{2} \left (\frac {b}{c}\right )^{\frac {1}{4}}}\) \(124\)

Input:

int(x^(13/2)/(c*x^4+b*x^2)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/2*x^(3/2)/c/(c*x^2+b)+3/16/c^2/(1/c*b)^(1/4)*2^(1/2)*(ln((x-(1/c*b)^(1/ 
4)*x^(1/2)*2^(1/2)+(1/c*b)^(1/2))/(x+(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b) 
^(1/2)))+2*arctan(2^(1/2)/(1/c*b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(1/c*b 
)^(1/4)*x^(1/2)-1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.15 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.21 \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {3 \, {\left (c^{2} x^{2} + b c\right )} \left (-\frac {1}{b c^{7}}\right )^{\frac {1}{4}} \log \left (b c^{5} \left (-\frac {1}{b c^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - 3 \, {\left (i \, c^{2} x^{2} + i \, b c\right )} \left (-\frac {1}{b c^{7}}\right )^{\frac {1}{4}} \log \left (i \, b c^{5} \left (-\frac {1}{b c^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - 3 \, {\left (-i \, c^{2} x^{2} - i \, b c\right )} \left (-\frac {1}{b c^{7}}\right )^{\frac {1}{4}} \log \left (-i \, b c^{5} \left (-\frac {1}{b c^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - 3 \, {\left (c^{2} x^{2} + b c\right )} \left (-\frac {1}{b c^{7}}\right )^{\frac {1}{4}} \log \left (-b c^{5} \left (-\frac {1}{b c^{7}}\right )^{\frac {3}{4}} + \sqrt {x}\right ) - 4 \, x^{\frac {3}{2}}}{8 \, {\left (c^{2} x^{2} + b c\right )}} \] Input:

integrate(x^(13/2)/(c*x^4+b*x^2)^2,x, algorithm="fricas")
 

Output:

1/8*(3*(c^2*x^2 + b*c)*(-1/(b*c^7))^(1/4)*log(b*c^5*(-1/(b*c^7))^(3/4) + s 
qrt(x)) - 3*(I*c^2*x^2 + I*b*c)*(-1/(b*c^7))^(1/4)*log(I*b*c^5*(-1/(b*c^7) 
)^(3/4) + sqrt(x)) - 3*(-I*c^2*x^2 - I*b*c)*(-1/(b*c^7))^(1/4)*log(-I*b*c^ 
5*(-1/(b*c^7))^(3/4) + sqrt(x)) - 3*(c^2*x^2 + b*c)*(-1/(b*c^7))^(1/4)*log 
(-b*c^5*(-1/(b*c^7))^(3/4) + sqrt(x)) - 4*x^(3/2))/(c^2*x^2 + b*c)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate(x**(13/2)/(c*x**4+b*x**2)**2,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.18 \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {x^{\frac {3}{2}}}{2 \, {\left (c^{2} x^{2} + b c\right )}} + \frac {3 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {\sqrt {b} \sqrt {c}} \sqrt {c}} - \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {1}{4}} c^{\frac {3}{4}}}\right )}}{16 \, c} \] Input:

integrate(x^(13/2)/(c*x^4+b*x^2)^2,x, algorithm="maxima")
 

Output:

-1/2*x^(3/2)/(c^2*x^2 + b*c) + 3/16*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) 
*b^(1/4)*c^(1/4) + 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b) 
*sqrt(c))*sqrt(c)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4 
) - 2*sqrt(c)*sqrt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(sqrt(b)*sqrt(c))*sqrt( 
c)) - sqrt(2)*log(sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/( 
b^(1/4)*c^(3/4)) + sqrt(2)*log(-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)* 
x + sqrt(b))/(b^(1/4)*c^(3/4)))/c
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.21 \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {x^{\frac {3}{2}}}{2 \, {\left (c x^{2} + b\right )} c} + \frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b c^{4}} + \frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b c^{4}} - \frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b c^{4}} + \frac {3 \, \sqrt {2} \left (b c^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b c^{4}} \] Input:

integrate(x^(13/2)/(c*x^4+b*x^2)^2,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-1/2*x^(3/2)/((c*x^2 + b)*c) + 3/8*sqrt(2)*(b*c^3)^(3/4)*arctan(1/2*sqrt(2 
)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b*c^4) + 3/8*sqrt(2)*(b* 
c^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/ 
4))/(b*c^4) - 3/16*sqrt(2)*(b*c^3)^(3/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + 
 x + sqrt(b/c))/(b*c^4) + 3/16*sqrt(2)*(b*c^3)^(3/4)*log(-sqrt(2)*sqrt(x)* 
(b/c)^(1/4) + x + sqrt(b/c))/(b*c^4)
 

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.39 \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {3\,\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{1/4}\,c^{7/4}}-\frac {x^{3/2}}{2\,c\,\left (c\,x^2+b\right )}-\frac {3\,\mathrm {atanh}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{1/4}\,c^{7/4}} \] Input:

int(x^(13/2)/(b*x^2 + c*x^4)^2,x)
 

Output:

(3*atan((c^(1/4)*x^(1/2))/(-b)^(1/4)))/(4*(-b)^(1/4)*c^(7/4)) - x^(3/2)/(2 
*c*(b + c*x^2)) - (3*atanh((c^(1/4)*x^(1/2))/(-b)^(1/4)))/(4*(-b)^(1/4)*c^ 
(7/4))
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.86 \[ \int \frac {x^{13/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {-6 c^{\frac {1}{4}} b^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right )-6 c^{\frac {5}{4}} b^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}+6 c^{\frac {1}{4}} b^{\frac {7}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right )+6 c^{\frac {5}{4}} b^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}+3 c^{\frac {1}{4}} b^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right )+3 c^{\frac {5}{4}} b^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) x^{2}-3 c^{\frac {1}{4}} b^{\frac {7}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right )-3 c^{\frac {5}{4}} b^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) x^{2}-8 \sqrt {x}\, b c x}{16 b \,c^{2} \left (c \,x^{2}+b \right )} \] Input:

int(x^(13/2)/(c*x^4+b*x^2)^2,x)
 

Output:

( - 6*c**(1/4)*b**(3/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x 
)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b - 6*c**(1/4)*b**(3/4)*sqrt(2)*at 
an((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt 
(2)))*c*x**2 + 6*c**(1/4)*b**(3/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) 
 + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b + 6*c**(1/4)*b**(3/4) 
*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b* 
*(1/4)*sqrt(2)))*c*x**2 + 3*c**(1/4)*b**(3/4)*sqrt(2)*log( - sqrt(x)*c**(1 
/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b + 3*c**(1/4)*b**(3/4)*sqrt(2 
)*log( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*c*x**2 - 
 3*c**(1/4)*b**(3/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt( 
b) + sqrt(c)*x)*b - 3*c**(1/4)*b**(3/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1 
/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*c*x**2 - 8*sqrt(x)*b*c*x)/(16*b*c**2*(b 
 + c*x**2))