\(\int \frac {x^{11/2}}{(b x^2+c x^4)^2} \, dx\) [132]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 165 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{4 \sqrt {2} b^{3/4} c^{5/4}} \] Output:

-1/2*x^(1/2)/c/(c*x^2+b)-1/8*arctan(1-2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^( 
1/2)/b^(3/4)/c^(5/4)+1/8*arctan(1+2^(1/2)*c^(1/4)*x^(1/2)/b^(1/4))*2^(1/2) 
/b^(3/4)/c^(5/4)+1/8*arctanh(2^(1/2)*b^(1/4)*c^(1/4)*x^(1/2)/(b^(1/2)+c^(1 
/2)*x))*2^(1/2)/b^(3/4)/c^(5/4)
 

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.77 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {-\frac {4 \sqrt [4]{c} \sqrt {x}}{b+c x^2}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {b}-\sqrt {c} x}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}\right )}{b^{3/4}}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}}{\sqrt {b}+\sqrt {c} x}\right )}{b^{3/4}}}{8 c^{5/4}} \] Input:

Integrate[x^(11/2)/(b*x^2 + c*x^4)^2,x]
 

Output:

((-4*c^(1/4)*Sqrt[x])/(b + c*x^2) - (Sqrt[2]*ArcTan[(Sqrt[b] - Sqrt[c]*x)/ 
(Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x])])/b^(3/4) + (Sqrt[2]*ArcTanh[(Sqrt[2]*b^ 
(1/4)*c^(1/4)*Sqrt[x])/(Sqrt[b] + Sqrt[c]*x)])/b^(3/4))/(8*c^(5/4))
 

Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.46, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.579, Rules used = {9, 252, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 9

\(\displaystyle \int \frac {x^{3/2}}{\left (b+c x^2\right )^2}dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\int \frac {1}{\sqrt {x} \left (c x^2+b\right )}dx}{4 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\int \frac {1}{c x^2+b}d\sqrt {x}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {c} x+\sqrt {b}}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}+\frac {\int \frac {1}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {c}}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{-x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int \frac {1}{-x-1}d\left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {\int \frac {\sqrt {b}-\sqrt {c} x}{c x^2+b}d\sqrt {x}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{c} \left (x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}\right )}{\sqrt [4]{c} \left (x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}\right )}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{c} \sqrt {x}}{x-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt [4]{b} \sqrt {c}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}+\sqrt [4]{b}}{x+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{c}}+\frac {\sqrt {b}}{\sqrt {c}}}d\sqrt {x}}{2 \sqrt [4]{b} \sqrt {c}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{b} \sqrt [4]{c} \sqrt {x}+\sqrt {b}+\sqrt {c} x\right )}{2 \sqrt {2} \sqrt [4]{b} \sqrt [4]{c}}}{2 \sqrt {b}}}{2 c}-\frac {\sqrt {x}}{2 c \left (b+c x^2\right )}\)

Input:

Int[x^(11/2)/(b*x^2 + c*x^4)^2,x]
 

Output:

-1/2*Sqrt[x]/(c*(b + c*x^2)) + ((-(ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^ 
(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4))) + ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b 
^(1/4)]/(Sqrt[2]*b^(1/4)*c^(1/4)))/(2*Sqrt[b]) + (-1/2*Log[Sqrt[b] - Sqrt[ 
2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(Sqrt[2]*b^(1/4)*c^(1/4)) + Log[Sq 
rt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x]/(2*Sqrt[2]*b^(1/4)*c^ 
(1/4)))/(2*Sqrt[b]))/(2*c)
 

Defintions of rubi rules used

rule 9
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, 
x, Min]}, Simp[1/e^(p*r)   Int[u*(e*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, 
x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[p] && 
  !MonomialQ[Px, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 127, normalized size of antiderivative = 0.77

method result size
derivativedivides \(-\frac {\sqrt {x}}{2 c \left (c \,x^{2}+b \right )}+\frac {\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c b}\) \(127\)
default \(-\frac {\sqrt {x}}{2 c \left (c \,x^{2}+b \right )}+\frac {\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x +\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}{x -\left (\frac {b}{c}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {b}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {b}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{16 c b}\) \(127\)

Input:

int(x^(11/2)/(c*x^4+b*x^2)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/2*x^(1/2)/c/(c*x^2+b)+1/16/c*(1/c*b)^(1/4)/b*2^(1/2)*(ln((x+(1/c*b)^(1/ 
4)*x^(1/2)*2^(1/2)+(1/c*b)^(1/2))/(x-(1/c*b)^(1/4)*x^(1/2)*2^(1/2)+(1/c*b) 
^(1/2)))+2*arctan(2^(1/2)/(1/c*b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(1/c*b 
)^(1/4)*x^(1/2)-1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.16 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.16 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {{\left (c^{2} x^{2} + b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (-i \, c^{2} x^{2} - i \, b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (i \, b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (i \, c^{2} x^{2} + i \, b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (-i \, b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - {\left (c^{2} x^{2} + b c\right )} \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} \log \left (-b c \left (-\frac {1}{b^{3} c^{5}}\right )^{\frac {1}{4}} + \sqrt {x}\right ) - 4 \, \sqrt {x}}{8 \, {\left (c^{2} x^{2} + b c\right )}} \] Input:

integrate(x^(11/2)/(c*x^4+b*x^2)^2,x, algorithm="fricas")
 

Output:

1/8*((c^2*x^2 + b*c)*(-1/(b^3*c^5))^(1/4)*log(b*c*(-1/(b^3*c^5))^(1/4) + s 
qrt(x)) - (-I*c^2*x^2 - I*b*c)*(-1/(b^3*c^5))^(1/4)*log(I*b*c*(-1/(b^3*c^5 
))^(1/4) + sqrt(x)) - (I*c^2*x^2 + I*b*c)*(-1/(b^3*c^5))^(1/4)*log(-I*b*c* 
(-1/(b^3*c^5))^(1/4) + sqrt(x)) - (c^2*x^2 + b*c)*(-1/(b^3*c^5))^(1/4)*log 
(-b*c*(-1/(b^3*c^5))^(1/4) + sqrt(x)) - 4*sqrt(x))/(c^2*x^2 + b*c)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\text {Timed out} \] Input:

integrate(x**(11/2)/(c*x**4+b*x**2)**2,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.18 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, \sqrt {c} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {b} \sqrt {c}}}\right )}{\sqrt {b} \sqrt {\sqrt {b} \sqrt {c}}} + \frac {\sqrt {2} \log \left (\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {\sqrt {2} \log \left (-\sqrt {2} b^{\frac {1}{4}} c^{\frac {1}{4}} \sqrt {x} + \sqrt {c} x + \sqrt {b}\right )}{b^{\frac {3}{4}} c^{\frac {1}{4}}}}{16 \, c} - \frac {\sqrt {x}}{2 \, {\left (c^{2} x^{2} + b c\right )}} \] Input:

integrate(x^(11/2)/(c*x^4+b*x^2)^2,x, algorithm="maxima")
 

Output:

1/16*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) + 2*sqrt(c)*sq 
rt(x))/sqrt(sqrt(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + 2*sqrt(2)* 
arctan(-1/2*sqrt(2)*(sqrt(2)*b^(1/4)*c^(1/4) - 2*sqrt(c)*sqrt(x))/sqrt(sqr 
t(b)*sqrt(c)))/(sqrt(b)*sqrt(sqrt(b)*sqrt(c))) + sqrt(2)*log(sqrt(2)*b^(1/ 
4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(3/4)*c^(1/4)) - sqrt(2)*log( 
-sqrt(2)*b^(1/4)*c^(1/4)*sqrt(x) + sqrt(c)*x + sqrt(b))/(b^(3/4)*c^(1/4))) 
/c - 1/2*sqrt(x)/(c^2*x^2 + b*c)
 

Giac [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.21 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b c^{2}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {b}{c}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {b}{c}\right )^{\frac {1}{4}}}\right )}{8 \, b c^{2}} + \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b c^{2}} - \frac {\sqrt {2} \left (b c^{3}\right )^{\frac {1}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {b}{c}\right )^{\frac {1}{4}} + x + \sqrt {\frac {b}{c}}\right )}{16 \, b c^{2}} - \frac {\sqrt {x}}{2 \, {\left (c x^{2} + b\right )} c} \] Input:

integrate(x^(11/2)/(c*x^4+b*x^2)^2,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

1/8*sqrt(2)*(b*c^3)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(b/c)^(1/4) + 2*sqrt 
(x))/(b/c)^(1/4))/(b*c^2) + 1/8*sqrt(2)*(b*c^3)^(1/4)*arctan(-1/2*sqrt(2)* 
(sqrt(2)*(b/c)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b*c^2) + 1/16*sqrt(2)*(b*c 
^3)^(1/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b*c^2) - 1/16* 
sqrt(2)*(b*c^3)^(1/4)*log(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b 
*c^2) - 1/2*sqrt(x)/((c*x^2 + b)*c)
 

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.39 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=-\frac {\sqrt {x}}{2\,c\,\left (c\,x^2+b\right )}-\frac {\mathrm {atan}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{3/4}\,c^{5/4}}-\frac {\mathrm {atanh}\left (\frac {c^{1/4}\,\sqrt {x}}{{\left (-b\right )}^{1/4}}\right )}{4\,{\left (-b\right )}^{3/4}\,c^{5/4}} \] Input:

int(x^(11/2)/(b*x^2 + c*x^4)^2,x)
 

Output:

- x^(1/2)/(2*c*(b + c*x^2)) - atan((c^(1/4)*x^(1/2))/(-b)^(1/4))/(4*(-b)^( 
3/4)*c^(5/4)) - atanh((c^(1/4)*x^(1/2))/(-b)^(1/4))/(4*(-b)^(3/4)*c^(5/4))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.84 \[ \int \frac {x^{11/2}}{\left (b x^2+c x^4\right )^2} \, dx=\frac {-2 c^{\frac {3}{4}} b^{\frac {5}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right )-2 c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}+2 c^{\frac {3}{4}} b^{\frac {5}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right )+2 c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {c}}{c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}}\right ) x^{2}-c^{\frac {3}{4}} b^{\frac {5}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right )-c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) x^{2}+c^{\frac {3}{4}} b^{\frac {5}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right )+c^{\frac {7}{4}} b^{\frac {1}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, c^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {2}+\sqrt {b}+\sqrt {c}\, x \right ) x^{2}-8 \sqrt {x}\, b c}{16 b \,c^{2} \left (c \,x^{2}+b \right )} \] Input:

int(x^(11/2)/(c*x^4+b*x^2)^2,x)
 

Output:

( - 2*c**(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x 
)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b - 2*c**(3/4)*b**(1/4)*sqrt(2)*at 
an((c**(1/4)*b**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt 
(2)))*c*x**2 + 2*c**(3/4)*b**(1/4)*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) 
 + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b**(1/4)*sqrt(2)))*b + 2*c**(3/4)*b**(1/4) 
*sqrt(2)*atan((c**(1/4)*b**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(c))/(c**(1/4)*b* 
*(1/4)*sqrt(2)))*c*x**2 - c**(3/4)*b**(1/4)*sqrt(2)*log( - sqrt(x)*c**(1/4 
)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*b - c**(3/4)*b**(1/4)*sqrt(2)*lo 
g( - sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + sqrt(c)*x)*c*x**2 + c** 
(3/4)*b**(1/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt(2) + sqrt(b) + s 
qrt(c)*x)*b + c**(3/4)*b**(1/4)*sqrt(2)*log(sqrt(x)*c**(1/4)*b**(1/4)*sqrt 
(2) + sqrt(b) + sqrt(c)*x)*c*x**2 - 8*sqrt(x)*b*c)/(16*b*c**2*(b + c*x**2) 
)