\(\int \frac {(d x)^{3/2}}{(a^2+2 a b x^2+b^2 x^4)^2} \, dx\) [464]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 258 \[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}+\frac {d \sqrt {d x}}{48 a b \left (a+b x^2\right )^2}+\frac {7 d \sqrt {d x}}{192 a^2 b \left (a+b x^2\right )}-\frac {7 d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{128 \sqrt {2} a^{11/4} b^{5/4}}+\frac {7 d^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{128 \sqrt {2} a^{11/4} b^{5/4}}+\frac {7 d^{3/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{128 \sqrt {2} a^{11/4} b^{5/4}} \] Output:

-1/6*d*(d*x)^(1/2)/b/(b*x^2+a)^3+1/48*d*(d*x)^(1/2)/a/b/(b*x^2+a)^2+7/192* 
d*(d*x)^(1/2)/a^2/b/(b*x^2+a)-7/256*d^(3/2)*arctan(1-2^(1/2)*b^(1/4)*(d*x) 
^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(11/4)/b^(5/4)+7/256*d^(3/2)*arctan(1+2^ 
(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(11/4)/b^(5/4)+7/256* 
d^(3/2)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*(d*x)^(1/2)/d^(1/2)/(a^(1/2)+b^(1/ 
2)*x))*2^(1/2)/a^(11/4)/b^(5/4)
 

Mathematica [A] (verified)

Time = 0.41 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.62 \[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {(d x)^{3/2} \left (\frac {4 a^{3/4} \sqrt [4]{b} \sqrt {x} \left (-21 a^2+18 a b x^2+7 b^2 x^4\right )}{\left (a+b x^2\right )^3}-21 \sqrt {2} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+21 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{768 a^{11/4} b^{5/4} x^{3/2}} \] Input:

Integrate[(d*x)^(3/2)/(a^2 + 2*a*b*x^2 + b^2*x^4)^2,x]
 

Output:

((d*x)^(3/2)*((4*a^(3/4)*b^(1/4)*Sqrt[x]*(-21*a^2 + 18*a*b*x^2 + 7*b^2*x^4 
))/(a + b*x^2)^3 - 21*Sqrt[2]*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4 
)*b^(1/4)*Sqrt[x])] + 21*Sqrt[2]*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x]) 
/(Sqrt[a] + Sqrt[b]*x)]))/(768*a^(11/4)*b^(5/4)*x^(3/2))
 

Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 374, normalized size of antiderivative = 1.45, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.536, Rules used = {1380, 27, 252, 253, 253, 266, 755, 27, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1380

\(\displaystyle b^4 \int \frac {(d x)^{3/2}}{b^4 \left (b x^2+a\right )^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(d x)^{3/2}}{\left (a+b x^2\right )^4}dx\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {d^2 \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )^3}dx}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {d^2 \left (\frac {7 \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )^2}dx}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )}dx}{4 a}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \int \frac {1}{b x^2+a}d\sqrt {d x}}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {\int \frac {d^2 \left (\sqrt {a} d-\sqrt {b} d x\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}+\frac {\int \frac {d^2 \left (\sqrt {b} x d+\sqrt {a} d\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \left (-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {d^2 \left (\frac {7 \left (\frac {3 \left (\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{12 b}-\frac {d \sqrt {d x}}{6 b \left (a+b x^2\right )^3}\)

Input:

Int[(d*x)^(3/2)/(a^2 + 2*a*b*x^2 + b^2*x^4)^2,x]
 

Output:

-1/6*(d*Sqrt[d*x])/(b*(a + b*x^2)^3) + (d^2*(Sqrt[d*x]/(4*a*d*(a + b*x^2)^ 
2) + (7*(Sqrt[d*x]/(2*a*d*(a + b*x^2)) + (3*((d*(-(ArcTan[1 - (Sqrt[2]*b^( 
1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + Ar 
cTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b 
^(1/4)*Sqrt[d])))/(2*Sqrt[a]) + (d*(-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqr 
t[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) 
+ Log[Sqrt[a]*d + Sqrt[b]*d*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]] 
/(2*Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])))/(2*Sqrt[a])))/(2*a*d)))/(8*a)))/(12 
*b)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1380
Int[(u_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> S 
imp[1/c^p   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.80

method result size
derivativedivides \(2 d^{7} \left (\frac {\frac {7 b \left (d x \right )^{\frac {9}{2}}}{384 a^{2} d^{4}}+\frac {3 \left (d x \right )^{\frac {5}{2}}}{64 a \,d^{2}}-\frac {7 \sqrt {d x}}{128 b}}{\left (b \,d^{2} x^{2}+a \,d^{2}\right )^{3}}+\frac {7 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{1024 a^{3} d^{6} b}\right )\) \(206\)
default \(2 d^{7} \left (\frac {\frac {7 b \left (d x \right )^{\frac {9}{2}}}{384 a^{2} d^{4}}+\frac {3 \left (d x \right )^{\frac {5}{2}}}{64 a \,d^{2}}-\frac {7 \sqrt {d x}}{128 b}}{\left (b \,d^{2} x^{2}+a \,d^{2}\right )^{3}}+\frac {7 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{1024 a^{3} d^{6} b}\right )\) \(206\)
pseudoelliptic \(\frac {7 d \left (\frac {\ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (b \,x^{2}+a \right )^{3}}{2}+\sqrt {2}\, \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \left (b \,x^{2}+a \right )^{3} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )+\sqrt {2}\, \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \left (b \,x^{2}+a \right )^{3} \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )-4 \sqrt {d x}\, a \left (-\frac {1}{3} b^{2} x^{4}-\frac {6}{7} a b \,x^{2}+a^{2}\right )\right )}{256 a^{3} b \left (b \,x^{2}+a \right )^{3}}\) \(232\)

Input:

int((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x,method=_RETURNVERBOSE)
 

Output:

2*d^7*((7/384/a^2/d^4*b*(d*x)^(9/2)+3/64/a/d^2*(d*x)^(5/2)-7/128/b*(d*x)^( 
1/2))/(b*d^2*x^2+a*d^2)^3+7/1024/a^3/d^6/b*(a*d^2/b)^(1/4)*2^(1/2)*(ln((d* 
x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4 
)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+2*arctan(2^(1/2)/(a*d^2/b)^(1/4)*( 
d*x)^(1/2)+1)+2*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2)-1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.18 (sec) , antiderivative size = 406, normalized size of antiderivative = 1.57 \[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {21 \, {\left (a^{2} b^{4} x^{6} + 3 \, a^{3} b^{3} x^{4} + 3 \, a^{4} b^{2} x^{2} + a^{5} b\right )} \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} \log \left (7 \, a^{3} b \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} d\right ) - 21 \, {\left (-i \, a^{2} b^{4} x^{6} - 3 i \, a^{3} b^{3} x^{4} - 3 i \, a^{4} b^{2} x^{2} - i \, a^{5} b\right )} \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} \log \left (7 i \, a^{3} b \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} d\right ) - 21 \, {\left (i \, a^{2} b^{4} x^{6} + 3 i \, a^{3} b^{3} x^{4} + 3 i \, a^{4} b^{2} x^{2} + i \, a^{5} b\right )} \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} \log \left (-7 i \, a^{3} b \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} d\right ) - 21 \, {\left (a^{2} b^{4} x^{6} + 3 \, a^{3} b^{3} x^{4} + 3 \, a^{4} b^{2} x^{2} + a^{5} b\right )} \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} \log \left (-7 \, a^{3} b \left (-\frac {d^{6}}{a^{11} b^{5}}\right )^{\frac {1}{4}} + 7 \, \sqrt {d x} d\right ) + 4 \, {\left (7 \, b^{2} d x^{4} + 18 \, a b d x^{2} - 21 \, a^{2} d\right )} \sqrt {d x}}{768 \, {\left (a^{2} b^{4} x^{6} + 3 \, a^{3} b^{3} x^{4} + 3 \, a^{4} b^{2} x^{2} + a^{5} b\right )}} \] Input:

integrate((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x, algorithm="fricas")
 

Output:

1/768*(21*(a^2*b^4*x^6 + 3*a^3*b^3*x^4 + 3*a^4*b^2*x^2 + a^5*b)*(-d^6/(a^1 
1*b^5))^(1/4)*log(7*a^3*b*(-d^6/(a^11*b^5))^(1/4) + 7*sqrt(d*x)*d) - 21*(- 
I*a^2*b^4*x^6 - 3*I*a^3*b^3*x^4 - 3*I*a^4*b^2*x^2 - I*a^5*b)*(-d^6/(a^11*b 
^5))^(1/4)*log(7*I*a^3*b*(-d^6/(a^11*b^5))^(1/4) + 7*sqrt(d*x)*d) - 21*(I* 
a^2*b^4*x^6 + 3*I*a^3*b^3*x^4 + 3*I*a^4*b^2*x^2 + I*a^5*b)*(-d^6/(a^11*b^5 
))^(1/4)*log(-7*I*a^3*b*(-d^6/(a^11*b^5))^(1/4) + 7*sqrt(d*x)*d) - 21*(a^2 
*b^4*x^6 + 3*a^3*b^3*x^4 + 3*a^4*b^2*x^2 + a^5*b)*(-d^6/(a^11*b^5))^(1/4)* 
log(-7*a^3*b*(-d^6/(a^11*b^5))^(1/4) + 7*sqrt(d*x)*d) + 4*(7*b^2*d*x^4 + 1 
8*a*b*d*x^2 - 21*a^2*d)*sqrt(d*x))/(a^2*b^4*x^6 + 3*a^3*b^3*x^4 + 3*a^4*b^ 
2*x^2 + a^5*b)
 

Sympy [F]

\[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\int \frac {\left (d x\right )^{\frac {3}{2}}}{\left (a + b x^{2}\right )^{4}}\, dx \] Input:

integrate((d*x)**(3/2)/(b**2*x**4+2*a*b*x**2+a**2)**2,x)
 

Output:

Integral((d*x)**(3/2)/(a + b*x**2)**4, x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.29 \[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {\frac {8 \, {\left (7 \, \left (d x\right )^{\frac {9}{2}} b^{2} d^{4} + 18 \, \left (d x\right )^{\frac {5}{2}} a b d^{6} - 21 \, \sqrt {d x} a^{2} d^{8}\right )}}{a^{2} b^{4} d^{6} x^{6} + 3 \, a^{3} b^{3} d^{6} x^{4} + 3 \, a^{4} b^{2} d^{6} x^{2} + a^{5} b d^{6}} + \frac {21 \, {\left (\frac {\sqrt {2} d^{4} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} d^{4} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} + \frac {2 \, \sqrt {2} d^{3} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}} + \frac {2 \, \sqrt {2} d^{3} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}}\right )}}{a^{2} b}}{1536 \, d} \] Input:

integrate((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x, algorithm="maxima")
 

Output:

1/1536*(8*(7*(d*x)^(9/2)*b^2*d^4 + 18*(d*x)^(5/2)*a*b*d^6 - 21*sqrt(d*x)*a 
^2*d^8)/(a^2*b^4*d^6*x^6 + 3*a^3*b^3*d^6*x^4 + 3*a^4*b^2*d^6*x^2 + a^5*b*d 
^6) + 21*(sqrt(2)*d^4*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^ 
(1/4) + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/4)) - sqrt(2)*d^4*log(sqrt(b)*d*x - 
 sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/ 
4)) + 2*sqrt(2)*d^3*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) + 2* 
sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt( 
a)) + 2*sqrt(2)*d^3*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 2 
*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt 
(a)))/(a^2*b))/d
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.22 \[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {\frac {42 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} b^{2}} + \frac {42 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} b^{2}} + \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{2} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{3} b^{2}} - \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} d^{2} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{3} b^{2}} + \frac {8 \, {\left (7 \, \sqrt {d x} b^{2} d^{8} x^{4} + 18 \, \sqrt {d x} a b d^{8} x^{2} - 21 \, \sqrt {d x} a^{2} d^{8}\right )}}{{\left (b d^{2} x^{2} + a d^{2}\right )}^{3} a^{2} b}}{1536 \, d} \] Input:

integrate((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x, algorithm="giac")
 

Output:

1/1536*(42*sqrt(2)*(a*b^3*d^2)^(1/4)*d^2*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^ 
2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b^2) + 42*sqrt(2)*(a*b^3*d 
^2)^(1/4)*d^2*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/ 
(a*d^2/b)^(1/4))/(a^3*b^2) + 21*sqrt(2)*(a*b^3*d^2)^(1/4)*d^2*log(d*x + sq 
rt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*b^2) - 21*sqrt(2)*(a 
*b^3*d^2)^(1/4)*d^2*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d 
^2/b))/(a^3*b^2) + 8*(7*sqrt(d*x)*b^2*d^8*x^4 + 18*sqrt(d*x)*a*b*d^8*x^2 - 
 21*sqrt(d*x)*a^2*d^8)/((b*d^2*x^2 + a*d^2)^3*a^2*b))/d
 

Mupad [B] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.58 \[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {\frac {3\,d^5\,{\left (d\,x\right )}^{5/2}}{32\,a}-\frac {7\,d^7\,\sqrt {d\,x}}{64\,b}+\frac {7\,b\,d^3\,{\left (d\,x\right )}^{9/2}}{192\,a^2}}{a^3\,d^6+3\,a^2\,b\,d^6\,x^2+3\,a\,b^2\,d^6\,x^4+b^3\,d^6\,x^6}-\frac {7\,d^{3/2}\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{128\,{\left (-a\right )}^{11/4}\,b^{5/4}}-\frac {7\,d^{3/2}\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{128\,{\left (-a\right )}^{11/4}\,b^{5/4}} \] Input:

int((d*x)^(3/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^2,x)
 

Output:

((3*d^5*(d*x)^(5/2))/(32*a) - (7*d^7*(d*x)^(1/2))/(64*b) + (7*b*d^3*(d*x)^ 
(9/2))/(192*a^2))/(a^3*d^6 + b^3*d^6*x^6 + 3*a^2*b*d^6*x^2 + 3*a*b^2*d^6*x 
^4) - (7*d^(3/2)*atan((b^(1/4)*(d*x)^(1/2))/((-a)^(1/4)*d^(1/2))))/(128*(- 
a)^(11/4)*b^(5/4)) - (7*d^(3/2)*atanh((b^(1/4)*(d*x)^(1/2))/((-a)^(1/4)*d^ 
(1/2))))/(128*(-a)^(11/4)*b^(5/4))
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 651, normalized size of antiderivative = 2.52 \[ \int \frac {(d x)^{3/2}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int((d*x)^(3/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x)
 

Output:

(sqrt(d)*d*( - 42*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2 
) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**3 - 126*b**(3/4)*a* 
*(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1 
/4)*a**(1/4)*sqrt(2)))*a**2*b*x**2 - 126*b**(3/4)*a**(1/4)*sqrt(2)*atan((b 
**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2))) 
*a*b**2*x**4 - 42*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2 
) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**3*x**6 + 42*b**(3/4 
)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b 
**(1/4)*a**(1/4)*sqrt(2)))*a**3 + 126*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**( 
1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a* 
*2*b*x**2 + 126*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
+ 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a*b**2*x**4 + 42*b**(3/4 
)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b 
**(1/4)*a**(1/4)*sqrt(2)))*b**3*x**6 - 21*b**(3/4)*a**(1/4)*sqrt(2)*log( - 
 sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a**3 - 63*b**(3/ 
4)*a**(1/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + s 
qrt(b)*x)*a**2*b*x**2 - 63*b**(3/4)*a**(1/4)*sqrt(2)*log( - sqrt(x)*b**(1/ 
4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b**2*x**4 - 21*b**(3/4)*a**(1 
/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x 
)*b**3*x**6 + 21*b**(3/4)*a**(1/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4...