\(\int \frac {\sqrt {d x}}{(a^2+2 a b x^2+b^2 x^4)^2} \, dx\) [465]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 258 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}+\frac {3 (d x)^{3/2}}{16 a^2 d \left (a+b x^2\right )^2}+\frac {15 (d x)^{3/2}}{64 a^3 d \left (a+b x^2\right )}-\frac {15 \sqrt {d} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{128 \sqrt {2} a^{13/4} b^{3/4}}+\frac {15 \sqrt {d} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{128 \sqrt {2} a^{13/4} b^{3/4}}-\frac {15 \sqrt {d} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{128 \sqrt {2} a^{13/4} b^{3/4}} \] Output:

1/6*(d*x)^(3/2)/a/d/(b*x^2+a)^3+3/16*(d*x)^(3/2)/a^2/d/(b*x^2+a)^2+15/64*( 
d*x)^(3/2)/a^3/d/(b*x^2+a)-15/256*d^(1/2)*arctan(1-2^(1/2)*b^(1/4)*(d*x)^( 
1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(13/4)/b^(3/4)+15/256*d^(1/2)*arctan(1+2^( 
1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(13/4)/b^(3/4)-15/256* 
d^(1/2)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*(d*x)^(1/2)/d^(1/2)/(a^(1/2)+b^(1/ 
2)*x))*2^(1/2)/a^(13/4)/b^(3/4)
 

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.62 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {\sqrt {d x} \left (\frac {4 \sqrt [4]{a} x^{3/2} \left (113 a^2+126 a b x^2+45 b^2 x^4\right )}{\left (a+b x^2\right )^3}-\frac {45 \sqrt {2} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{b^{3/4}}-\frac {45 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{b^{3/4}}\right )}{768 a^{13/4} \sqrt {x}} \] Input:

Integrate[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4)^2,x]
 

Output:

(Sqrt[d*x]*((4*a^(1/4)*x^(3/2)*(113*a^2 + 126*a*b*x^2 + 45*b^2*x^4))/(a + 
b*x^2)^3 - (45*Sqrt[2]*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/ 
4)*Sqrt[x])])/b^(3/4) - (45*Sqrt[2]*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[ 
x])/(Sqrt[a] + Sqrt[b]*x)])/b^(3/4)))/(768*a^(13/4)*Sqrt[x])
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 369, normalized size of antiderivative = 1.43, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.536, Rules used = {1380, 27, 253, 253, 253, 266, 27, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1380

\(\displaystyle b^4 \int \frac {\sqrt {d x}}{b^4 \left (b x^2+a\right )^4}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {\sqrt {d x}}{\left (a+b x^2\right )^4}dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {3 \int \frac {\sqrt {d x}}{\left (b x^2+a\right )^3}dx}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {3 \left (\frac {5 \int \frac {\sqrt {d x}}{\left (b x^2+a\right )^2}dx}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {\int \frac {\sqrt {d x}}{b x^2+a}dx}{4 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {\int \frac {d^3 x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 a d}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \int \frac {d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {3 \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{4 a}+\frac {(d x)^{3/2}}{6 a d \left (a+b x^2\right )^3}\)

Input:

Int[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4)^2,x]
 

Output:

(d*x)^(3/2)/(6*a*d*(a + b*x^2)^3) + (3*((d*x)^(3/2)/(4*a*d*(a + b*x^2)^2) 
+ (5*((d*x)^(3/2)/(2*a*d*(a + b*x^2)) + (d*((-(ArcTan[1 - (Sqrt[2]*b^(1/4) 
*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + ArcTan 
[1 + (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/ 
4)*Sqrt[d]))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^( 
1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sq 
rt[a]*d + Sqrt[b]*d*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt 
[2]*a^(1/4)*b^(1/4)*Sqrt[d]))/(2*Sqrt[b])))/(2*a)))/(8*a)))/(4*a)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1380
Int[(u_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> S 
imp[1/c^p   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.51 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.82

method result size
derivativedivides \(2 d^{7} \left (\frac {\frac {15 b^{2} \left (d x \right )^{\frac {11}{2}}}{128 a^{3} d^{6}}+\frac {21 b \left (d x \right )^{\frac {7}{2}}}{64 a^{2} d^{4}}+\frac {113 \left (d x \right )^{\frac {3}{2}}}{384 a \,d^{2}}}{\left (b \,d^{2} x^{2}+a \,d^{2}\right )^{3}}+\frac {15 \sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{1024 a^{3} d^{6} b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )\) \(212\)
default \(2 d^{7} \left (\frac {\frac {15 b^{2} \left (d x \right )^{\frac {11}{2}}}{128 a^{3} d^{6}}+\frac {21 b \left (d x \right )^{\frac {7}{2}}}{64 a^{2} d^{4}}+\frac {113 \left (d x \right )^{\frac {3}{2}}}{384 a \,d^{2}}}{\left (b \,d^{2} x^{2}+a \,d^{2}\right )^{3}}+\frac {15 \sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{1024 a^{3} d^{6} b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )\) \(212\)
pseudoelliptic \(\frac {904 \left (\frac {45}{113} b^{2} x^{4}+\frac {126}{113} a b \,x^{2}+a^{2}\right ) \sqrt {d x}\, b x \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}+45 d \sqrt {2}\, \left (b \,x^{2}+a \right )^{3} \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )\right )}{1536 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} a^{3} b \left (b \,x^{2}+a \right )^{3}}\) \(224\)

Input:

int((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x,method=_RETURNVERBOSE)
 

Output:

2*d^7*((15/128/a^3/d^6*b^2*(d*x)^(11/2)+21/64/a^2*b/d^4*(d*x)^(7/2)+113/38 
4/a/d^2*(d*x)^(3/2))/(b*d^2*x^2+a*d^2)^3+15/1024/a^3/d^6/b/(a*d^2/b)^(1/4) 
*2^(1/2)*(ln((d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d* 
x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+2*arctan(2^(1/2)/( 
a*d^2/b)^(1/4)*(d*x)^(1/2)+1)+2*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2) 
-1)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.14 (sec) , antiderivative size = 394, normalized size of antiderivative = 1.53 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {45 \, {\left (a^{3} b^{3} x^{6} + 3 \, a^{4} b^{2} x^{4} + 3 \, a^{5} b x^{2} + a^{6}\right )} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {1}{4}} \log \left (3375 \, a^{10} b^{2} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {3}{4}} + 3375 \, \sqrt {d x} d\right ) - 45 \, {\left (i \, a^{3} b^{3} x^{6} + 3 i \, a^{4} b^{2} x^{4} + 3 i \, a^{5} b x^{2} + i \, a^{6}\right )} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {1}{4}} \log \left (3375 i \, a^{10} b^{2} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {3}{4}} + 3375 \, \sqrt {d x} d\right ) - 45 \, {\left (-i \, a^{3} b^{3} x^{6} - 3 i \, a^{4} b^{2} x^{4} - 3 i \, a^{5} b x^{2} - i \, a^{6}\right )} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {1}{4}} \log \left (-3375 i \, a^{10} b^{2} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {3}{4}} + 3375 \, \sqrt {d x} d\right ) - 45 \, {\left (a^{3} b^{3} x^{6} + 3 \, a^{4} b^{2} x^{4} + 3 \, a^{5} b x^{2} + a^{6}\right )} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {1}{4}} \log \left (-3375 \, a^{10} b^{2} \left (-\frac {d^{2}}{a^{13} b^{3}}\right )^{\frac {3}{4}} + 3375 \, \sqrt {d x} d\right ) + 4 \, {\left (45 \, b^{2} x^{5} + 126 \, a b x^{3} + 113 \, a^{2} x\right )} \sqrt {d x}}{768 \, {\left (a^{3} b^{3} x^{6} + 3 \, a^{4} b^{2} x^{4} + 3 \, a^{5} b x^{2} + a^{6}\right )}} \] Input:

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x, algorithm="fricas")
 

Output:

1/768*(45*(a^3*b^3*x^6 + 3*a^4*b^2*x^4 + 3*a^5*b*x^2 + a^6)*(-d^2/(a^13*b^ 
3))^(1/4)*log(3375*a^10*b^2*(-d^2/(a^13*b^3))^(3/4) + 3375*sqrt(d*x)*d) - 
45*(I*a^3*b^3*x^6 + 3*I*a^4*b^2*x^4 + 3*I*a^5*b*x^2 + I*a^6)*(-d^2/(a^13*b 
^3))^(1/4)*log(3375*I*a^10*b^2*(-d^2/(a^13*b^3))^(3/4) + 3375*sqrt(d*x)*d) 
 - 45*(-I*a^3*b^3*x^6 - 3*I*a^4*b^2*x^4 - 3*I*a^5*b*x^2 - I*a^6)*(-d^2/(a^ 
13*b^3))^(1/4)*log(-3375*I*a^10*b^2*(-d^2/(a^13*b^3))^(3/4) + 3375*sqrt(d* 
x)*d) - 45*(a^3*b^3*x^6 + 3*a^4*b^2*x^4 + 3*a^5*b*x^2 + a^6)*(-d^2/(a^13*b 
^3))^(1/4)*log(-3375*a^10*b^2*(-d^2/(a^13*b^3))^(3/4) + 3375*sqrt(d*x)*d) 
+ 4*(45*b^2*x^5 + 126*a*b*x^3 + 113*a^2*x)*sqrt(d*x))/(a^3*b^3*x^6 + 3*a^4 
*b^2*x^4 + 3*a^5*b*x^2 + a^6)
 

Sympy [F]

\[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\int \frac {\sqrt {d x}}{\left (a + b x^{2}\right )^{4}}\, dx \] Input:

integrate((d*x)**(1/2)/(b**2*x**4+2*a*b*x**2+a**2)**2,x)
 

Output:

Integral(sqrt(d*x)/(a + b*x**2)**4, x)
 

Maxima [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 317, normalized size of antiderivative = 1.23 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {\frac {8 \, {\left (45 \, \left (d x\right )^{\frac {11}{2}} b^{2} d^{2} + 126 \, \left (d x\right )^{\frac {7}{2}} a b d^{4} + 113 \, \left (d x\right )^{\frac {3}{2}} a^{2} d^{6}\right )}}{a^{3} b^{3} d^{6} x^{6} + 3 \, a^{4} b^{2} d^{6} x^{4} + 3 \, a^{5} b d^{6} x^{2} + a^{6} d^{6}} + \frac {45 \, d^{2} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{a^{3}}}{1536 \, d} \] Input:

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x, algorithm="maxima")
 

Output:

1/1536*(8*(45*(d*x)^(11/2)*b^2*d^2 + 126*(d*x)^(7/2)*a*b*d^4 + 113*(d*x)^( 
3/2)*a^2*d^6)/(a^3*b^3*d^6*x^6 + 3*a^4*b^2*d^6*x^4 + 3*a^5*b*d^6*x^2 + a^6 
*d^6) + 45*d^2*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4 
) + 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d) 
*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 
 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sq 
rt(b)) - sqrt(2)*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) 
 + sqrt(a)*d)/((a*d^2)^(1/4)*b^(3/4)) + sqrt(2)*log(sqrt(b)*d*x - sqrt(2)* 
(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(1/4)*b^(3/4)))/a^3) 
/d
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.17 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {\frac {90 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{4} b^{3}} + \frac {90 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{4} b^{3}} - \frac {45 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{4} b^{3}} + \frac {45 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{4} b^{3}} + \frac {8 \, {\left (45 \, \sqrt {d x} b^{2} d^{7} x^{5} + 126 \, \sqrt {d x} a b d^{7} x^{3} + 113 \, \sqrt {d x} a^{2} d^{7} x\right )}}{{\left (b d^{2} x^{2} + a d^{2}\right )}^{3} a^{3}}}{1536 \, d} \] Input:

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

1/1536*(90*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b) 
^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^4*b^3) + 90*sqrt(2)*(a*b^3*d^2)^ 
(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b 
)^(1/4))/(a^4*b^3) - 45*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x + sqrt(2)*(a*d^2 
/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^4*b^3) + 45*sqrt(2)*(a*b^3*d^2)^(3 
/4)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^4*b^3) 
 + 8*(45*sqrt(d*x)*b^2*d^7*x^5 + 126*sqrt(d*x)*a*b*d^7*x^3 + 113*sqrt(d*x) 
*a^2*d^7*x)/((b*d^2*x^2 + a*d^2)^3*a^3))/d
 

Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.58 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx=\frac {\frac {113\,d^5\,{\left (d\,x\right )}^{3/2}}{192\,a}+\frac {21\,b\,d^3\,{\left (d\,x\right )}^{7/2}}{32\,a^2}+\frac {15\,b^2\,d\,{\left (d\,x\right )}^{11/2}}{64\,a^3}}{a^3\,d^6+3\,a^2\,b\,d^6\,x^2+3\,a\,b^2\,d^6\,x^4+b^3\,d^6\,x^6}-\frac {15\,\sqrt {d}\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{128\,{\left (-a\right )}^{13/4}\,b^{3/4}}+\frac {15\,\sqrt {d}\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{128\,{\left (-a\right )}^{13/4}\,b^{3/4}} \] Input:

int((d*x)^(1/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^2,x)
 

Output:

((113*d^5*(d*x)^(3/2))/(192*a) + (21*b*d^3*(d*x)^(7/2))/(32*a^2) + (15*b^2 
*d*(d*x)^(11/2))/(64*a^3))/(a^3*d^6 + b^3*d^6*x^6 + 3*a^2*b*d^6*x^2 + 3*a* 
b^2*d^6*x^4) - (15*d^(1/2)*atan((b^(1/4)*(d*x)^(1/2))/((-a)^(1/4)*d^(1/2)) 
))/(128*(-a)^(13/4)*b^(3/4)) + (15*d^(1/2)*atanh((b^(1/4)*(d*x)^(1/2))/((- 
a)^(1/4)*d^(1/2))))/(128*(-a)^(13/4)*b^(3/4))
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 651, normalized size of antiderivative = 2.52 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^2} \, dx =\text {Too large to display} \] Input:

int((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^2,x)
 

Output:

(sqrt(d)*( - 90*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
- 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**3 - 270*b**(1/4)*a**( 
3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4 
)*a**(1/4)*sqrt(2)))*a**2*b*x**2 - 270*b**(1/4)*a**(3/4)*sqrt(2)*atan((b** 
(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a 
*b**2*x**4 - 90*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
- 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**3*x**6 + 90*b**(1/4)* 
a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b** 
(1/4)*a**(1/4)*sqrt(2)))*a**3 + 270*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/ 
4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2 
*b*x**2 + 270*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 
2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a*b**2*x**4 + 90*b**(1/4)* 
a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b** 
(1/4)*a**(1/4)*sqrt(2)))*b**3*x**6 + 45*b**(1/4)*a**(3/4)*sqrt(2)*log( - s 
qrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a**3 + 135*b**(1/4 
)*a**(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sq 
rt(b)*x)*a**2*b*x**2 + 135*b**(1/4)*a**(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/ 
4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b**2*x**4 + 45*b**(1/4)*a**(3 
/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x 
)*b**3*x**6 - 45*b**(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4...