\(\int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx\) [634]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 259 \[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=-\frac {\left (a+b x^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} a^{3/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (a+b x^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} a^{3/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{\sqrt {2} a^{3/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}} \] Output:

-1/2*(b*x^2+a)*arctan(1-2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/ 
2)/a^(3/4)/b^(1/4)/d^(1/2)/((b*x^2+a)^2)^(1/2)+1/2*(b*x^2+a)*arctan(1+2^(1 
/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(3/4)/b^(1/4)/d^(1/2)/( 
(b*x^2+a)^2)^(1/2)+1/2*(b*x^2+a)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*(d*x)^(1/ 
2)/d^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(3/4)/b^(1/4)/d^(1/2)/((b*x^2+a) 
^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.48 \[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=-\frac {\sqrt {x} \left (a+b x^2\right ) \left (\arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{\sqrt {2} a^{3/4} \sqrt [4]{b} \sqrt {d x} \sqrt {\left (a+b x^2\right )^2}} \] Input:

Integrate[1/(Sqrt[d*x]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]),x]
 

Output:

-((Sqrt[x]*(a + b*x^2)*(ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1 
/4)*Sqrt[x])] - ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[ 
b]*x)]))/(Sqrt[2]*a^(3/4)*b^(1/4)*Sqrt[d*x]*Sqrt[(a + b*x^2)^2]))
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.17, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {1384, 27, 266, 755, 27, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx\)

\(\Big \downarrow \) 1384

\(\displaystyle \frac {b \left (a+b x^2\right ) \int \frac {1}{b \sqrt {d x} \left (b x^2+a\right )}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 \left (a+b x^2\right ) \int \frac {1}{b x^2+a}d\sqrt {d x}}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {\int \frac {d^2 \left (\sqrt {a} d-\sqrt {b} d x\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}+\frac {\int \frac {d^2 \left (\sqrt {b} x d+\sqrt {a} d\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \left (-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (a+b x^2\right ) \left (\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{d \sqrt {a^2+2 a b x^2+b^2 x^4}}\)

Input:

Int[1/(Sqrt[d*x]*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]),x]
 

Output:

(2*(a + b*x^2)*((d*(-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt 
[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqr 
t[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])))/(2*Sqrt[a]) 
 + (d*(-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]* 
Sqrt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sqrt[a]*d + Sqrt[b]*d*x 
 + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt[2]*a^(1/4)*b^(1/4)*S 
qrt[d])))/(2*Sqrt[a])))/(d*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1384
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> S 
imp[(a + b*x^n + c*x^(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*Frac 
Part[p]))   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && NeQ[u, x^(n 
- 1)] && NeQ[u, x^(2*n - 1)] &&  !(EqQ[p, 1/2] && EqQ[u, x^(-2*n - 1)])
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.70

method result size
default \(\frac {\left (b \,x^{2}+a \right ) \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )\right )}{4 \sqrt {\left (b \,x^{2}+a \right )^{2}}\, d a}\) \(182\)

Input:

int(1/(d*x)^(1/2)/((b*x^2+a)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/((b*x^2+a)^2)^(1/2)*(b*x^2+a)/d*(a*d^2/b)^(1/4)/a*2^(1/2)*(ln((d*x+(a* 
d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d* 
x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+2*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b) 
^(1/4))/(a*d^2/b)^(1/4))+2*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a 
*d^2/b)^(1/4)))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 156, normalized size of antiderivative = 0.60 \[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\frac {1}{2} \, \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} \log \left (a d \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) + \frac {1}{2} i \, \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} \log \left (i \, a d \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) - \frac {1}{2} i \, \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} \log \left (-i \, a d \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) - \frac {1}{2} \, \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} \log \left (-a d \left (-\frac {1}{a^{3} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) \] Input:

integrate(1/(d*x)^(1/2)/((b*x^2+a)^2)^(1/2),x, algorithm="fricas")
 

Output:

1/2*(-1/(a^3*b*d^2))^(1/4)*log(a*d*(-1/(a^3*b*d^2))^(1/4) + sqrt(d*x)) + 1 
/2*I*(-1/(a^3*b*d^2))^(1/4)*log(I*a*d*(-1/(a^3*b*d^2))^(1/4) + sqrt(d*x)) 
- 1/2*I*(-1/(a^3*b*d^2))^(1/4)*log(-I*a*d*(-1/(a^3*b*d^2))^(1/4) + sqrt(d* 
x)) - 1/2*(-1/(a^3*b*d^2))^(1/4)*log(-a*d*(-1/(a^3*b*d^2))^(1/4) + sqrt(d* 
x))
 

Sympy [F]

\[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\int \frac {1}{\sqrt {d x} \sqrt {\left (a + b x^{2}\right )^{2}}}\, dx \] Input:

integrate(1/(d*x)**(1/2)/((b*x**2+a)**2)**(1/2),x)
 

Output:

Integral(1/(sqrt(d*x)*sqrt((a + b*x**2)**2)), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 226, normalized size of antiderivative = 0.87 \[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\frac {\frac {\sqrt {2} d^{2} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} - \frac {\sqrt {2} d^{2} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {3}{4}} b^{\frac {1}{4}}} + \frac {2 \, \sqrt {2} d \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}} + \frac {2 \, \sqrt {2} d \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {a}}}{4 \, d} \] Input:

integrate(1/(d*x)^(1/2)/((b*x^2+a)^2)^(1/2),x, algorithm="maxima")
 

Output:

1/4*(sqrt(2)*d^2*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) 
 + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/4)) - sqrt(2)*d^2*log(sqrt(b)*d*x - sqrt 
(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(3/4)*b^(1/4)) + 
 2*sqrt(2)*d*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) + 2*sqrt(d* 
x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(a)) + 2 
*sqrt(2)*d*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 2*sqrt(d*x 
)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(a)))/d
 

Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 251, normalized size of antiderivative = 0.97 \[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\frac {1}{4} \, {\left (\frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a b d} + \frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a b d} + \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a b d} - \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a b d}\right )} \mathrm {sgn}\left (b x^{2} + a\right ) \] Input:

integrate(1/(d*x)^(1/2)/((b*x^2+a)^2)^(1/2),x, algorithm="giac")
 

Output:

1/4*(2*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/ 
4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a*b*d) + 2*sqrt(2)*(a*b^3*d^2)^(1/4)*a 
rctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4) 
)/(a*b*d) + sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sq 
rt(d*x) + sqrt(a*d^2/b))/(a*b*d) - sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x - sqr 
t(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a*b*d))*sgn(b*x^2 + a)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\int \frac {1}{\sqrt {d\,x}\,\sqrt {{\left (b\,x^2+a\right )}^2}} \,d x \] Input:

int(1/((d*x)^(1/2)*((a + b*x^2)^2)^(1/2)),x)
 

Output:

int(1/((d*x)^(1/2)*((a + b*x^2)^2)^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.45 \[ \int \frac {1}{\sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\frac {\sqrt {d}\, \sqrt {2}\, \left (-2 \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )+2 \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )-\mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )+\mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )\right )}{4 b^{\frac {1}{4}} a^{\frac {3}{4}} d} \] Input:

int(1/(d*x)^(1/2)/((b*x^2+a)^2)^(1/2),x)
 

Output:

(sqrt(d)*b**(3/4)*a**(1/4)*sqrt(2)*( - 2*atan((b**(1/4)*a**(1/4)*sqrt(2) - 
 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2))) + 2*atan((b**(1/4)*a**(1/ 
4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2))) - log( - sqrt 
(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x) + log(sqrt(x)*b**(1/4 
)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)))/(4*a*b*d)