\(\int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx\) [635]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 303 \[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=-\frac {2 \left (a+b x^2\right )}{a d \sqrt {d x} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt [4]{b} \left (a+b x^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} a^{5/4} d^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {\sqrt [4]{b} \left (a+b x^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} a^{5/4} d^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt [4]{b} \left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{\sqrt {2} a^{5/4} d^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \] Output:

(-2*b*x^2-2*a)/a/d/(d*x)^(1/2)/((b*x^2+a)^2)^(1/2)+1/2*b^(1/4)*(b*x^2+a)*a 
rctan(1-2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(5/4)/d^(3/ 
2)/((b*x^2+a)^2)^(1/2)-1/2*b^(1/4)*(b*x^2+a)*arctan(1+2^(1/2)*b^(1/4)*(d*x 
)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(5/4)/d^(3/2)/((b*x^2+a)^2)^(1/2)+1/2*b 
^(1/4)*(b*x^2+a)*arctanh(2^(1/2)*a^(1/4)*b^(1/4)*(d*x)^(1/2)/d^(1/2)/(a^(1 
/2)+b^(1/2)*x))*2^(1/2)/a^(5/4)/d^(3/2)/((b*x^2+a)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.50 \[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\frac {x \left (a+b x^2\right ) \left (-4 \sqrt [4]{a}+\sqrt {2} \sqrt [4]{b} \sqrt {x} \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+\sqrt {2} \sqrt [4]{b} \sqrt {x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{2 a^{5/4} (d x)^{3/2} \sqrt {\left (a+b x^2\right )^2}} \] Input:

Integrate[1/((d*x)^(3/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]),x]
 

Output:

(x*(a + b*x^2)*(-4*a^(1/4) + Sqrt[2]*b^(1/4)*Sqrt[x]*ArcTan[(Sqrt[a] - Sqr 
t[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] + Sqrt[2]*b^(1/4)*Sqrt[x]*ArcTa 
nh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)]))/(2*a^(5/4)*( 
d*x)^(3/2)*Sqrt[(a + b*x^2)^2])
 

Rubi [A] (verified)

Time = 0.89 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.06, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.433, Rules used = {1384, 27, 264, 266, 27, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx\)

\(\Big \downarrow \) 1384

\(\displaystyle \frac {b \left (a+b x^2\right ) \int \frac {1}{b (d x)^{3/2} \left (b x^2+a\right )}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \int \frac {1}{(d x)^{3/2} \left (b x^2+a\right )}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {b \int \frac {\sqrt {d x}}{b x^2+a}dx}{a d^2}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \int \frac {d^3 x}{b x^2 d^2+a d^2}d\sqrt {d x}}{a d^3}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \int \frac {d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\left (a+b x^2\right ) \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

Input:

Int[1/((d*x)^(3/2)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]),x]
 

Output:

((a + b*x^2)*(-2/(a*d*Sqrt[d*x]) - (2*b*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sq 
rt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + ArcTan[1 
+ (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)* 
Sqrt[d]))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^(1/4 
)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sqrt[ 
a]*d + Sqrt[b]*d*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt[2] 
*a^(1/4)*b^(1/4)*Sqrt[d]))/(2*Sqrt[b])))/(a*d)))/Sqrt[a^2 + 2*a*b*x^2 + b^ 
2*x^4]
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1384
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> S 
imp[(a + b*x^n + c*x^(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*Frac 
Part[p]))   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && NeQ[u, x^(n 
- 1)] && NeQ[u, x^(2*n - 1)] &&  !(EqQ[p, 1/2] && EqQ[u, x^(-2*n - 1)])
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.65

method result size
risch \(-\frac {2 \sqrt {\left (b \,x^{2}+a \right )^{2}}}{a \sqrt {d x}\, d \left (b \,x^{2}+a \right )}-\frac {\sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right ) \sqrt {\left (b \,x^{2}+a \right )^{2}}}{4 a \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} d \left (b \,x^{2}+a \right )}\) \(196\)
default \(-\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {2}\, \sqrt {d x}\, \ln \left (-\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}-d x -\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \sqrt {2}\, \sqrt {d x}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+2 \sqrt {2}\, \sqrt {d x}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+8 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}\right )}{4 d \sqrt {\left (b \,x^{2}+a \right )^{2}}\, a \sqrt {d x}\, \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\) \(224\)

Input:

int(1/(d*x)^(3/2)/((b*x^2+a)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/a/(d*x)^(1/2)/d*((b*x^2+a)^2)^(1/2)/(b*x^2+a)-1/4/a/(a*d^2/b)^(1/4)*2^( 
1/2)*(ln((d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x+(a 
*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+2*arctan(2^(1/2)/(a*d^ 
2/b)^(1/4)*(d*x)^(1/2)+1)+2*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2)-1)) 
/d*((b*x^2+a)^2)^(1/2)/(b*x^2+a)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.66 \[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=-\frac {a d^{2} x \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {1}{4}} \log \left (a^{4} d^{5} \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {3}{4}} + \sqrt {d x} b\right ) - i \, a d^{2} x \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {1}{4}} \log \left (i \, a^{4} d^{5} \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {3}{4}} + \sqrt {d x} b\right ) + i \, a d^{2} x \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {1}{4}} \log \left (-i \, a^{4} d^{5} \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {3}{4}} + \sqrt {d x} b\right ) - a d^{2} x \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {1}{4}} \log \left (-a^{4} d^{5} \left (-\frac {b}{a^{5} d^{6}}\right )^{\frac {3}{4}} + \sqrt {d x} b\right ) + 4 \, \sqrt {d x}}{2 \, a d^{2} x} \] Input:

integrate(1/(d*x)^(3/2)/((b*x^2+a)^2)^(1/2),x, algorithm="fricas")
 

Output:

-1/2*(a*d^2*x*(-b/(a^5*d^6))^(1/4)*log(a^4*d^5*(-b/(a^5*d^6))^(3/4) + sqrt 
(d*x)*b) - I*a*d^2*x*(-b/(a^5*d^6))^(1/4)*log(I*a^4*d^5*(-b/(a^5*d^6))^(3/ 
4) + sqrt(d*x)*b) + I*a*d^2*x*(-b/(a^5*d^6))^(1/4)*log(-I*a^4*d^5*(-b/(a^5 
*d^6))^(3/4) + sqrt(d*x)*b) - a*d^2*x*(-b/(a^5*d^6))^(1/4)*log(-a^4*d^5*(- 
b/(a^5*d^6))^(3/4) + sqrt(d*x)*b) + 4*sqrt(d*x))/(a*d^2*x)
 

Sympy [F]

\[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\int \frac {1}{\left (d x\right )^{\frac {3}{2}} \sqrt {\left (a + b x^{2}\right )^{2}}}\, dx \] Input:

integrate(1/(d*x)**(3/2)/((b*x**2+a)**2)**(1/2),x)
 

Output:

Integral(1/((d*x)**(3/2)*sqrt((a + b*x**2)**2)), x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.77 \[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=-\frac {\frac {b {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{a} + \frac {8}{\sqrt {d x} a}}{4 \, d} \] Input:

integrate(1/(d*x)^(3/2)/((b*x^2+a)^2)^(1/2),x, algorithm="maxima")
 

Output:

-1/4*(b*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) + 2*s 
qrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(b 
)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 2*sqrt 
(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(b)) 
- sqrt(2)*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + sqrt 
(a)*d)/((a*d^2)^(1/4)*b^(3/4)) + sqrt(2)*log(sqrt(b)*d*x - sqrt(2)*(a*d^2) 
^(1/4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(1/4)*b^(3/4)))/a + 8/(sqrt 
(d*x)*a))/d
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 264, normalized size of antiderivative = 0.87 \[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=-\frac {{\left (\frac {8}{\sqrt {d x} a} + \frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{2} b^{2} d^{2}} + \frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{2} b^{2} d^{2}} - \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{2} b^{2} d^{2}} + \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{2} b^{2} d^{2}}\right )} \mathrm {sgn}\left (b x^{2} + a\right )}{4 \, d} \] Input:

integrate(1/(d*x)^(3/2)/((b*x^2+a)^2)^(1/2),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-1/4*(8/(sqrt(d*x)*a) + 2*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(1/2*sqrt(2)*(sq 
rt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^2*b^2*d^2) + 2*sq 
rt(2)*(a*b^3*d^2)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*s 
qrt(d*x))/(a*d^2/b)^(1/4))/(a^2*b^2*d^2) - sqrt(2)*(a*b^3*d^2)^(3/4)*log(d 
*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^2*b^2*d^2) + sq 
rt(2)*(a*b^3*d^2)^(3/4)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt 
(a*d^2/b))/(a^2*b^2*d^2))*sgn(b*x^2 + a)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\int \frac {1}{{\left (d\,x\right )}^{3/2}\,\sqrt {{\left (b\,x^2+a\right )}^2}} \,d x \] Input:

int(1/((d*x)^(3/2)*((a + b*x^2)^2)^(1/2)),x)
 

Output:

int(1/((d*x)^(3/2)*((a + b*x^2)^2)^(1/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.53 \[ \int \frac {1}{(d x)^{3/2} \sqrt {a^2+2 a b x^2+b^2 x^4}} \, dx=\frac {\sqrt {d}\, \left (2 \sqrt {x}\, b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}-2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )-2 \sqrt {x}\, b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathit {atan} \left (\frac {b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+2 \sqrt {x}\, \sqrt {b}}{b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}}\right )-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (-\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )+\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {3}{4}} \sqrt {2}\, \mathrm {log}\left (\sqrt {x}\, b^{\frac {1}{4}} a^{\frac {1}{4}} \sqrt {2}+\sqrt {a}+\sqrt {b}\, x \right )-8 a \right )}{4 \sqrt {x}\, a^{2} d^{2}} \] Input:

int(1/(d*x)^(3/2)/((b*x^2+a)^2)^(1/2),x)
 

Output:

(sqrt(d)*(2*sqrt(x)*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt 
(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2))) - 2*sqrt(x)*b**(1/4) 
*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b* 
*(1/4)*a**(1/4)*sqrt(2))) - sqrt(x)*b**(1/4)*a**(3/4)*sqrt(2)*log( - sqrt( 
x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x) + sqrt(x)*b**(1/4)*a** 
(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x) 
 - 8*a))/(4*sqrt(x)*a**2*d**2)