\(\int \frac {\sqrt {d x}}{(a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\) [645]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 354 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {5 (d x)^{3/2}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {5 \sqrt {d} \left (a+b x^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {5 \sqrt {d} \left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{32 \sqrt {2} a^{9/4} b^{3/4} \sqrt {a^2+2 a b x^2+b^2 x^4}} \] Output:

5/16*(d*x)^(3/2)/a^2/d/((b*x^2+a)^2)^(1/2)+1/4*(d*x)^(3/2)/a/d/(b*x^2+a)/( 
(b*x^2+a)^2)^(1/2)-5/64*d^(1/2)*(b*x^2+a)*arctan(1-2^(1/2)*b^(1/4)*(d*x)^( 
1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^(9/4)/b^(3/4)/((b*x^2+a)^2)^(1/2)+5/64*d^( 
1/2)*(b*x^2+a)*arctan(1+2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/ 
2)/a^(9/4)/b^(3/4)/((b*x^2+a)^2)^(1/2)-5/64*d^(1/2)*(b*x^2+a)*arctanh(2^(1 
/2)*a^(1/4)*b^(1/4)*(d*x)^(1/2)/d^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(9/ 
4)/b^(3/4)/((b*x^2+a)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.51 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {\sqrt {d x} \left (4 \sqrt [4]{a} b^{3/4} x^{3/2} \left (9 a+5 b x^2\right )-5 \sqrt {2} \left (a+b x^2\right )^2 \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )-5 \sqrt {2} \left (a+b x^2\right )^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{64 a^{9/4} b^{3/4} \sqrt {x} \left (a+b x^2\right ) \sqrt {\left (a+b x^2\right )^2}} \] Input:

Integrate[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]
 

Output:

(Sqrt[d*x]*(4*a^(1/4)*b^(3/4)*x^(3/2)*(9*a + 5*b*x^2) - 5*Sqrt[2]*(a + b*x 
^2)^2*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] - 5* 
Sqrt[2]*(a + b*x^2)^2*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + 
 Sqrt[b]*x)]))/(64*a^(9/4)*b^(3/4)*Sqrt[x]*(a + b*x^2)*Sqrt[(a + b*x^2)^2] 
)
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 365, normalized size of antiderivative = 1.03, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {1384, 27, 253, 253, 266, 27, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1384

\(\displaystyle \frac {b^3 \left (a+b x^2\right ) \int \frac {\sqrt {d x}}{b^3 \left (b x^2+a\right )^3}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \int \frac {\sqrt {d x}}{\left (b x^2+a\right )^3}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \int \frac {\sqrt {d x}}{\left (b x^2+a\right )^2}dx}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {\int \frac {\sqrt {d x}}{b x^2+a}dx}{4 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {\int \frac {d^3 x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 a d}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \int \frac {d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {5 \left (\frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {(d x)^{3/2}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

Input:

Int[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2),x]
 

Output:

((a + b*x^2)*((d*x)^(3/2)/(4*a*d*(a + b*x^2)^2) + (5*((d*x)^(3/2)/(2*a*d*( 
a + b*x^2)) + (d*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[ 
d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt 
[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]))/(2*Sqrt[b]) - 
 (-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[ 
d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sqrt[a]*d + Sqrt[b]*d*x + Sq 
rt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d 
]))/(2*Sqrt[b])))/(2*a)))/(8*a)))/Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1384
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> S 
imp[(a + b*x^n + c*x^(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*Frac 
Part[p]))   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && NeQ[u, x^(n 
- 1)] && NeQ[u, x^(2*n - 1)] &&  !(EqQ[p, 1/2] && EqQ[u, x^(-2*n - 1)])
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(616\) vs. \(2(227)=454\).

Time = 0.13 (sec) , antiderivative size = 617, normalized size of antiderivative = 1.74

method result size
default \(\frac {\left (5 \sqrt {2}\, \ln \left (-\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}-d x -\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) b^{2} d^{2} x^{4}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) b^{2} d^{2} x^{4}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) b^{2} d^{2} x^{4}+10 \sqrt {2}\, \ln \left (-\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}-d x -\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) a b \,d^{2} x^{2}+20 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a b \,d^{2} x^{2}+20 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a b \,d^{2} x^{2}+40 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \left (d x \right )^{\frac {3}{2}} b^{2} x^{2}+5 \sqrt {2}\, \ln \left (-\frac {\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}-d x -\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) a^{2} d^{2}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a^{2} d^{2}+10 \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a^{2} d^{2}+72 \left (d x \right )^{\frac {3}{2}} a b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}\right ) \left (b \,x^{2}+a \right )}{128 d \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} b \,a^{2} {\left (\left (b \,x^{2}+a \right )^{2}\right )}^{\frac {3}{2}}}\) \(617\)

Input:

int((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/128*(5*2^(1/2)*ln(-((a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)-d*x-(a*d^2/b)^(1 
/2))/(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*b^2*d^2*x^ 
4+10*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4)) 
*b^2*d^2*x^4+10*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^ 
2/b)^(1/4))*b^2*d^2*x^4+10*2^(1/2)*ln(-((a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2 
)-d*x-(a*d^2/b)^(1/2))/(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^ 
(1/2)))*a*b*d^2*x^2+20*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4) 
)/(a*d^2/b)^(1/4))*a*b*d^2*x^2+20*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d 
^2/b)^(1/4))/(a*d^2/b)^(1/4))*a*b*d^2*x^2+40*(a*d^2/b)^(1/4)*(d*x)^(3/2)*b 
^2*x^2+5*2^(1/2)*ln(-((a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)-d*x-(a*d^2/b)^(1 
/2))/(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*a^2*d^2+10 
*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a^2 
*d^2+10*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/ 
4))*a^2*d^2+72*(d*x)^(3/2)*a*b*(a*d^2/b)^(1/4))/d*(b*x^2+a)/(a*d^2/b)^(1/4 
)/b/a^2/((b*x^2+a)^2)^(3/2)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 328, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {5 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (125 \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) - 5 \, {\left (i \, a^{2} b^{2} x^{4} + 2 i \, a^{3} b x^{2} + i \, a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (125 i \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) - 5 \, {\left (-i \, a^{2} b^{2} x^{4} - 2 i \, a^{3} b x^{2} - i \, a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-125 i \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) - 5 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {1}{4}} \log \left (-125 \, a^{7} b^{2} \left (-\frac {d^{2}}{a^{9} b^{3}}\right )^{\frac {3}{4}} + 125 \, \sqrt {d x} d\right ) + 4 \, {\left (5 \, b x^{3} + 9 \, a x\right )} \sqrt {d x}}{64 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )}} \] Input:

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="fricas")
 

Output:

1/64*(5*(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)*(-d^2/(a^9*b^3))^(1/4)*log(125*a 
^7*b^2*(-d^2/(a^9*b^3))^(3/4) + 125*sqrt(d*x)*d) - 5*(I*a^2*b^2*x^4 + 2*I* 
a^3*b*x^2 + I*a^4)*(-d^2/(a^9*b^3))^(1/4)*log(125*I*a^7*b^2*(-d^2/(a^9*b^3 
))^(3/4) + 125*sqrt(d*x)*d) - 5*(-I*a^2*b^2*x^4 - 2*I*a^3*b*x^2 - I*a^4)*( 
-d^2/(a^9*b^3))^(1/4)*log(-125*I*a^7*b^2*(-d^2/(a^9*b^3))^(3/4) + 125*sqrt 
(d*x)*d) - 5*(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)*(-d^2/(a^9*b^3))^(1/4)*log( 
-125*a^7*b^2*(-d^2/(a^9*b^3))^(3/4) + 125*sqrt(d*x)*d) + 4*(5*b*x^3 + 9*a* 
x)*sqrt(d*x))/(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4)
 

Sympy [F]

\[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {d x}}{\left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((d*x)**(1/2)/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)
 

Output:

Integral(sqrt(d*x)/((a + b*x**2)**2)**(3/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.75 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {\sqrt {d} x^{\frac {3}{2}}}{2 \, {\left (a^{2} b x^{2} + a^{3} + {\left (a b^{2} x^{2} + a^{2} b\right )} x^{2}\right )}} + \frac {5 \, b \sqrt {d} x^{\frac {7}{2}} + a \sqrt {d} x^{\frac {3}{2}}}{16 \, {\left (a^{2} b^{2} x^{4} + 2 \, a^{3} b x^{2} + a^{4}\right )}} + \frac {5 \, \sqrt {d} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{128 \, a^{2}} \] Input:

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="maxima")
 

Output:

1/2*sqrt(d)*x^(3/2)/(a^2*b*x^2 + a^3 + (a*b^2*x^2 + a^2*b)*x^2) + 1/16*(5* 
b*sqrt(d)*x^(7/2) + a*sqrt(d)*x^(3/2))/(a^2*b^2*x^4 + 2*a^3*b*x^2 + a^4) + 
 5/128*sqrt(d)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2* 
sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 
2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x) 
)/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqr 
t(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sq 
rt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4) 
*b^(3/4)))/a^2
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 333, normalized size of antiderivative = 0.94 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {\frac {8 \, {\left (5 \, \sqrt {d x} b d^{5} x^{3} + 9 \, \sqrt {d x} a d^{5} x\right )}}{{\left (b d^{2} x^{2} + a d^{2}\right )}^{2} a^{2} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {10 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {10 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )} - \frac {5 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {5 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{3} b^{3} \mathrm {sgn}\left (b x^{2} + a\right )}}{128 \, d} \] Input:

integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

1/128*(8*(5*sqrt(d*x)*b*d^5*x^3 + 9*sqrt(d*x)*a*d^5*x)/((b*d^2*x^2 + a*d^2 
)^2*a^2*sgn(b*x^2 + a)) + 10*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(1/2*sqrt(2)* 
(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b^3*sgn(b*x^ 
2 + a)) + 10*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2 
/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b^3*sgn(b*x^2 + a)) - 5*sqr 
t(2)*(a*b^3*d^2)^(3/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt( 
a*d^2/b))/(a^3*b^3*sgn(b*x^2 + a)) + 5*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x - 
 sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*b^3*sgn(b*x^2 + a 
)))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\int \frac {\sqrt {d\,x}}{{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{3/2}} \,d x \] Input:

int((d*x)^(1/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2),x)
 

Output:

int((d*x)^(1/2)/(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 480, normalized size of antiderivative = 1.36 \[ \int \frac {\sqrt {d x}}{\left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx =\text {Too large to display} \] Input:

int((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x)
 

Output:

(sqrt(d)*( - 10*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
- 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2 - 20*b**(1/4)*a**(3 
/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4) 
*a**(1/4)*sqrt(2)))*a*b*x**2 - 10*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4) 
*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2*x 
**4 + 10*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqr 
t(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2 + 20*b**(1/4)*a**(3/4)*sqr 
t(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/ 
4)*sqrt(2)))*a*b*x**2 + 10*b**(1/4)*a**(3/4)*sqrt(2)*atan((b**(1/4)*a**(1/ 
4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2*x**4 + 5 
*b**(1/4)*a**(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt 
(a) + sqrt(b)*x)*a**2 + 10*b**(1/4)*a**(3/4)*sqrt(2)*log( - sqrt(x)*b**(1/ 
4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 + 5*b**(1/4)*a**(3/4)* 
sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*b* 
*2*x**4 - 5*b**(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2 
) + sqrt(a) + sqrt(b)*x)*a**2 - 10*b**(1/4)*a**(3/4)*sqrt(2)*log(sqrt(x)*b 
**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 - 5*b**(1/4)*a**( 
3/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)* 
b**2*x**4 + 72*sqrt(x)*a**2*b*x + 40*sqrt(x)*a*b**2*x**3))/(128*a**3*b*(a* 
*2 + 2*a*b*x**2 + b**2*x**4))