\(\int \frac {1}{\sqrt {d x} (a^2+2 a b x^2+b^2 x^4)^{3/2}} \, dx\) [646]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 30, antiderivative size = 354 \[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {7 \sqrt {d x}}{16 a^2 d \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right ) \sqrt {a^2+2 a b x^2+b^2 x^4}}-\frac {21 \left (a+b x^2\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}}+\frac {21 \left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}}{\sqrt {d} \left (\sqrt {a}+\sqrt {b} x\right )}\right )}{32 \sqrt {2} a^{11/4} \sqrt [4]{b} \sqrt {d} \sqrt {a^2+2 a b x^2+b^2 x^4}} \] Output:

7/16*(d*x)^(1/2)/a^2/d/((b*x^2+a)^2)^(1/2)+1/4*(d*x)^(1/2)/a/d/(b*x^2+a)/( 
(b*x^2+a)^2)^(1/2)-21/64*(b*x^2+a)*arctan(1-2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^ 
(1/4)/d^(1/2))*2^(1/2)/a^(11/4)/b^(1/4)/d^(1/2)/((b*x^2+a)^2)^(1/2)+21/64* 
(b*x^2+a)*arctan(1+2^(1/2)*b^(1/4)*(d*x)^(1/2)/a^(1/4)/d^(1/2))*2^(1/2)/a^ 
(11/4)/b^(1/4)/d^(1/2)/((b*x^2+a)^2)^(1/2)+21/64*(b*x^2+a)*arctanh(2^(1/2) 
*a^(1/4)*b^(1/4)*(d*x)^(1/2)/d^(1/2)/(a^(1/2)+b^(1/2)*x))*2^(1/2)/a^(11/4) 
/b^(1/4)/d^(1/2)/((b*x^2+a)^2)^(1/2)
 

Mathematica [A] (verified)

Time = 0.26 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.51 \[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {\sqrt {x} \left (4 a^{3/4} \sqrt [4]{b} \sqrt {x} \left (11 a+7 b x^2\right )-21 \sqrt {2} \left (a+b x^2\right )^2 \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+21 \sqrt {2} \left (a+b x^2\right )^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{64 a^{11/4} \sqrt [4]{b} \sqrt {d x} \left (a+b x^2\right ) \sqrt {\left (a+b x^2\right )^2}} \] Input:

Integrate[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)),x]
 

Output:

(Sqrt[x]*(4*a^(3/4)*b^(1/4)*Sqrt[x]*(11*a + 7*b*x^2) - 21*Sqrt[2]*(a + b*x 
^2)^2*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] + 21 
*Sqrt[2]*(a + b*x^2)^2*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] 
+ Sqrt[b]*x)]))/(64*a^(11/4)*b^(1/4)*Sqrt[d*x]*(a + b*x^2)*Sqrt[(a + b*x^2 
)^2])
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 369, normalized size of antiderivative = 1.04, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.467, Rules used = {1384, 27, 253, 253, 266, 755, 27, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1384

\(\displaystyle \frac {b^3 \left (a+b x^2\right ) \int \frac {1}{b^3 \sqrt {d x} \left (b x^2+a\right )^3}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )^3}dx}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )^2}dx}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \int \frac {1}{\sqrt {d x} \left (b x^2+a\right )}dx}{4 a}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \int \frac {1}{b x^2+a}d\sqrt {d x}}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {\int \frac {d^2 \left (\sqrt {a} d-\sqrt {b} d x\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}+\frac {\int \frac {d^2 \left (\sqrt {b} x d+\sqrt {a} d\right )}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a} d}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \left (-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \left (\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\left (a+b x^2\right ) \left (\frac {7 \left (\frac {3 \left (\frac {d \left (\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}+\frac {d \left (\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}\right )}{2 \sqrt {a}}\right )}{2 a d}+\frac {\sqrt {d x}}{2 a d \left (a+b x^2\right )}\right )}{8 a}+\frac {\sqrt {d x}}{4 a d \left (a+b x^2\right )^2}\right )}{\sqrt {a^2+2 a b x^2+b^2 x^4}}\)

Input:

Int[1/(Sqrt[d*x]*(a^2 + 2*a*b*x^2 + b^2*x^4)^(3/2)),x]
 

Output:

((a + b*x^2)*(Sqrt[d*x]/(4*a*d*(a + b*x^2)^2) + (7*(Sqrt[d*x]/(2*a*d*(a + 
b*x^2)) + (3*((d*(-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d 
])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[ 
d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])))/(2*Sqrt[a]) + 
 (d*(-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sq 
rt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sqrt[a]*d + Sqrt[b]*d*x + 
 Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt[2]*a^(1/4)*b^(1/4)*Sqr 
t[d])))/(2*Sqrt[a])))/(2*a*d)))/(8*a)))/Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1384
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> S 
imp[(a + b*x^n + c*x^(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*Frac 
Part[p]))   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && NeQ[u, x^(n 
- 1)] && NeQ[u, x^(2*n - 1)] &&  !(EqQ[p, 1/2] && EqQ[u, x^(-2*n - 1)])
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(637\) vs. \(2(227)=454\).

Time = 0.13 (sec) , antiderivative size = 638, normalized size of antiderivative = 1.80

method result size
default \(\frac {\left (21 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) b^{2} x^{4}+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) b^{2} x^{4}+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) b^{2} x^{4}+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) a b \,x^{2}+84 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a b \,x^{2}+84 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a b \,x^{2}+21 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right ) a^{2}+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a^{2}+42 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right ) a^{2}+56 \sqrt {d x}\, a b \,x^{2}+88 \sqrt {d x}\, a^{2}\right ) \left (b \,x^{2}+a \right )}{128 d \,a^{3} {\left (\left (b \,x^{2}+a \right )^{2}\right )}^{\frac {3}{2}}}\) \(638\)

Input:

int(1/(d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/128*(21*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1 
/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1 
/2)))*b^2*x^4+42*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^ 
2/b)^(1/4))/(a*d^2/b)^(1/4))*b^2*x^4+42*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^ 
(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*b^2*x^4+42*(a*d^2/b)^( 
1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/ 
(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*a*b*x^2+84*(a*d 
^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b) 
^(1/4))*a*b*x^2+84*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a* 
d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a*b*x^2+21*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+ 
(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x-(a*d^2/b)^(1/4)* 
(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))*a^2+42*(a*d^2/b)^(1/4)*2^(1/2)*arcta 
n((2^(1/2)*(d*x)^(1/2)-(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))*a^2+42*(a*d^2/b)^ 
(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4) 
)*a^2+56*(d*x)^(1/2)*a*b*x^2+88*(d*x)^(1/2)*a^2)/d*(b*x^2+a)/a^3/((b*x^2+a 
)^2)^(3/2)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 324, normalized size of antiderivative = 0.92 \[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {21 \, {\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} \log \left (a^{3} d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) - 21 \, {\left (-i \, a^{2} b^{2} d x^{4} - 2 i \, a^{3} b d x^{2} - i \, a^{4} d\right )} \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} \log \left (i \, a^{3} d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) - 21 \, {\left (i \, a^{2} b^{2} d x^{4} + 2 i \, a^{3} b d x^{2} + i \, a^{4} d\right )} \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} \log \left (-i \, a^{3} d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) - 21 \, {\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )} \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} \log \left (-a^{3} d \left (-\frac {1}{a^{11} b d^{2}}\right )^{\frac {1}{4}} + \sqrt {d x}\right ) + 4 \, {\left (7 \, b x^{2} + 11 \, a\right )} \sqrt {d x}}{64 \, {\left (a^{2} b^{2} d x^{4} + 2 \, a^{3} b d x^{2} + a^{4} d\right )}} \] Input:

integrate(1/(d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="fricas 
")
 

Output:

1/64*(21*(a^2*b^2*d*x^4 + 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*l 
og(a^3*d*(-1/(a^11*b*d^2))^(1/4) + sqrt(d*x)) - 21*(-I*a^2*b^2*d*x^4 - 2*I 
*a^3*b*d*x^2 - I*a^4*d)*(-1/(a^11*b*d^2))^(1/4)*log(I*a^3*d*(-1/(a^11*b*d^ 
2))^(1/4) + sqrt(d*x)) - 21*(I*a^2*b^2*d*x^4 + 2*I*a^3*b*d*x^2 + I*a^4*d)* 
(-1/(a^11*b*d^2))^(1/4)*log(-I*a^3*d*(-1/(a^11*b*d^2))^(1/4) + sqrt(d*x)) 
- 21*(a^2*b^2*d*x^4 + 2*a^3*b*d*x^2 + a^4*d)*(-1/(a^11*b*d^2))^(1/4)*log(- 
a^3*d*(-1/(a^11*b*d^2))^(1/4) + sqrt(d*x)) + 4*(7*b*x^2 + 11*a)*sqrt(d*x)) 
/(a^2*b^2*d*x^4 + 2*a^3*b*d*x^2 + a^4*d)
 

Sympy [F]

\[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\int \frac {1}{\sqrt {d x} \left (\left (a + b x^{2}\right )^{2}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(d*x)**(1/2)/(b**2*x**4+2*a*b*x**2+a**2)**(3/2),x)
 

Output:

Integral(1/(sqrt(d*x)*((a + b*x**2)**2)**(3/2)), x)
 

Maxima [F]

\[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b^{2} x^{4} + 2 \, a b x^{2} + a^{2}\right )}^{\frac {3}{2}} \sqrt {d x}} \,d x } \] Input:

integrate(1/(d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="maxima 
")
 

Output:

-1/2*b*sqrt(d)*x^(5/2)/(a^3*b*d*x^2 + a^4*d + (a^2*b^2*d*x^2 + a^3*b*d)*x^ 
2) + 1/16*(15*b*x^(5/2) + 11*a*sqrt(x))/(a^2*b^2*sqrt(d)*x^4 + 2*a^3*b*sqr 
t(d)*x^2 + a^4*sqrt(d)) - 11/128*(2*sqrt(2)*sqrt(d)*arctan(1/2*sqrt(2)*(sq 
rt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a) 
*sqrt(sqrt(a)*sqrt(b))) + 2*sqrt(2)*sqrt(d)*arctan(-1/2*sqrt(2)*(sqrt(2)*a 
^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(a)*sqrt(s 
qrt(a)*sqrt(b))) + sqrt(2)*sqrt(d)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + s 
qrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)) - sqrt(2)*sqrt(d)*log(-sqrt(2)*a^(1/ 
4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(3/4)*b^(1/4)))/(a^2*d) + int 
egrate(1/((a^2*b*sqrt(d)*x^2 + a^3*sqrt(d))*sqrt(x)), x)
 

Giac [A] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 339, normalized size of antiderivative = 0.96 \[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\frac {7 \, \sqrt {d x} b d^{3} x^{2} + 11 \, \sqrt {d x} a d^{3}}{16 \, {\left (b d^{2} x^{2} + a d^{2}\right )}^{2} a^{2} \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{64 \, a^{3} b d \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{64 \, a^{3} b d \mathrm {sgn}\left (b x^{2} + a\right )} + \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{128 \, a^{3} b d \mathrm {sgn}\left (b x^{2} + a\right )} - \frac {21 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {1}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{128 \, a^{3} b d \mathrm {sgn}\left (b x^{2} + a\right )} \] Input:

integrate(1/(d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x, algorithm="giac")
 

Output:

1/16*(7*sqrt(d*x)*b*d^3*x^2 + 11*sqrt(d*x)*a*d^3)/((b*d^2*x^2 + a*d^2)^2*a 
^2*sgn(b*x^2 + a)) + 21/64*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(1/2*sqrt(2)*(s 
qrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b*d*sgn(b*x^2 
+ a)) + 21/64*sqrt(2)*(a*b^3*d^2)^(1/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^ 
2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^3*b*d*sgn(b*x^2 + a)) + 21/1 
28*sqrt(2)*(a*b^3*d^2)^(1/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + 
 sqrt(a*d^2/b))/(a^3*b*d*sgn(b*x^2 + a)) - 21/128*sqrt(2)*(a*b^3*d^2)^(1/4 
)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^3*b*d*sg 
n(b*x^2 + a))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx=\int \frac {1}{\sqrt {d\,x}\,{\left (a^2+2\,a\,b\,x^2+b^2\,x^4\right )}^{3/2}} \,d x \] Input:

int(1/((d*x)^(1/2)*(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2)),x)
 

Output:

int(1/((d*x)^(1/2)*(a^2 + b^2*x^4 + 2*a*b*x^2)^(3/2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 482, normalized size of antiderivative = 1.36 \[ \int \frac {1}{\sqrt {d x} \left (a^2+2 a b x^2+b^2 x^4\right )^{3/2}} \, dx =\text {Too large to display} \] Input:

int(1/(d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2)^(3/2),x)
 

Output:

(sqrt(d)*( - 42*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) 
- 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2 - 84*b**(3/4)*a**(1 
/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4) 
*a**(1/4)*sqrt(2)))*a*b*x**2 - 42*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4) 
*a**(1/4)*sqrt(2) - 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2*x 
**4 + 42*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqr 
t(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*a**2 + 84*b**(3/4)*a**(1/4)*sqr 
t(2)*atan((b**(1/4)*a**(1/4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/ 
4)*sqrt(2)))*a*b*x**2 + 42*b**(3/4)*a**(1/4)*sqrt(2)*atan((b**(1/4)*a**(1/ 
4)*sqrt(2) + 2*sqrt(x)*sqrt(b))/(b**(1/4)*a**(1/4)*sqrt(2)))*b**2*x**4 - 2 
1*b**(3/4)*a**(1/4)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqr 
t(a) + sqrt(b)*x)*a**2 - 42*b**(3/4)*a**(1/4)*sqrt(2)*log( - sqrt(x)*b**(1 
/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 - 21*b**(3/4)*a**(1/4 
)*sqrt(2)*log( - sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)* 
b**2*x**4 + 21*b**(3/4)*a**(1/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqr 
t(2) + sqrt(a) + sqrt(b)*x)*a**2 + 42*b**(3/4)*a**(1/4)*sqrt(2)*log(sqrt(x 
)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b)*x)*a*b*x**2 + 21*b**(3/4)* 
a**(1/4)*sqrt(2)*log(sqrt(x)*b**(1/4)*a**(1/4)*sqrt(2) + sqrt(a) + sqrt(b) 
*x)*b**2*x**4 + 88*sqrt(x)*a**2*b + 56*sqrt(x)*a*b**2*x**2))/(128*a**3*b*d 
*(a**2 + 2*a*b*x**2 + b**2*x**4))