\(\int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+(d^2-e^2) x^2-d e x^4}} \, dx\) [144]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 49, antiderivative size = 148 \[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\frac {B \arctan \left (\frac {\sqrt {d} x \sqrt {-d+e x^2}}{\sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}}\right )}{\sqrt {d} e}-\frac {(B d+A e) \arctan \left (\frac {\sqrt {d^2+e^2} x \sqrt {-d+e x^2}}{\sqrt {d} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}}\right )}{\sqrt {d} e \sqrt {d^2+e^2}} \] Output:

B*arctan(d^(1/2)*x*(e*x^2-d)^(1/2)/(d*e+(d^2-e^2)*x^2-d*e*x^4)^(1/2))/d^(1 
/2)/e-(A*e+B*d)*arctan((d^2+e^2)^(1/2)*x*(e*x^2-d)^(1/2)/d^(1/2)/(d*e+(d^2 
-e^2)*x^2-d*e*x^4)^(1/2))/d^(1/2)/e/(d^2+e^2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.71 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.28 \[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\frac {-\frac {(B d+A e) \sqrt {-e-d x^2} \sqrt {-d+e x^2} \text {arctanh}\left (\frac {\sqrt {-d^2-e^2} x}{\sqrt {d} \sqrt {-e-d x^2}}\right )}{\sqrt {-d^2-e^2} \sqrt {d^2 x^2-e^2 x^2+d \left (e-e x^4\right )}}-i B \log \left (-2 i \sqrt {d} x-\frac {2 \sqrt {d e+d^2 x^2-e^2 x^2-d e x^4}}{\sqrt {-d+e x^2}}\right )}{\sqrt {d} e} \] Input:

Integrate[(A + B*x^2)/(Sqrt[-d + e*x^2]*Sqrt[d*e + (d^2 - e^2)*x^2 - d*e*x 
^4]),x]
 

Output:

(-(((B*d + A*e)*Sqrt[-e - d*x^2]*Sqrt[-d + e*x^2]*ArcTanh[(Sqrt[-d^2 - e^2 
]*x)/(Sqrt[d]*Sqrt[-e - d*x^2])])/(Sqrt[-d^2 - e^2]*Sqrt[d^2*x^2 - e^2*x^2 
 + d*(e - e*x^4)])) - I*B*Log[(-2*I)*Sqrt[d]*x - (2*Sqrt[d*e + d^2*x^2 - e 
^2*x^2 - d*e*x^4])/Sqrt[-d + e*x^2]])/(Sqrt[d]*e)
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1395, 25, 398, 224, 216, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^2}{\sqrt {e x^2-d} \sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}} \, dx\)

\(\Big \downarrow \) 1395

\(\displaystyle \frac {\sqrt {-d x^2-e} \sqrt {e x^2-d} \int -\frac {B x^2+A}{\sqrt {-d x^2-e} \left (d-e x^2\right )}dx}{\sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {-d x^2-e} \sqrt {e x^2-d} \int \frac {B x^2+A}{\sqrt {-d x^2-e} \left (d-e x^2\right )}dx}{\sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}}\)

\(\Big \downarrow \) 398

\(\displaystyle -\frac {\sqrt {-d x^2-e} \sqrt {e x^2-d} \left (\frac {(A e+B d) \int \frac {1}{\sqrt {-d x^2-e} \left (d-e x^2\right )}dx}{e}-\frac {B \int \frac {1}{\sqrt {-d x^2-e}}dx}{e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}}\)

\(\Big \downarrow \) 224

\(\displaystyle -\frac {\sqrt {-d x^2-e} \sqrt {e x^2-d} \left (\frac {(A e+B d) \int \frac {1}{\sqrt {-d x^2-e} \left (d-e x^2\right )}dx}{e}-\frac {B \int \frac {1}{\frac {d x^2}{-d x^2-e}+1}d\frac {x}{\sqrt {-d x^2-e}}}{e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt {-d x^2-e} \sqrt {e x^2-d} \left (\frac {(A e+B d) \int \frac {1}{\sqrt {-d x^2-e} \left (d-e x^2\right )}dx}{e}-\frac {B \arctan \left (\frac {\sqrt {d} x}{\sqrt {-d x^2-e}}\right )}{\sqrt {d} e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}}\)

\(\Big \downarrow \) 291

\(\displaystyle -\frac {\sqrt {-d x^2-e} \sqrt {e x^2-d} \left (\frac {(A e+B d) \int \frac {1}{d-\frac {\left (-d^2-e^2\right ) x^2}{-d x^2-e}}d\frac {x}{\sqrt {-d x^2-e}}}{e}-\frac {B \arctan \left (\frac {\sqrt {d} x}{\sqrt {-d x^2-e}}\right )}{\sqrt {d} e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\sqrt {-d x^2-e} \sqrt {e x^2-d} \left (\frac {(A e+B d) \arctan \left (\frac {x \sqrt {d^2+e^2}}{\sqrt {d} \sqrt {-d x^2-e}}\right )}{\sqrt {d} e \sqrt {d^2+e^2}}-\frac {B \arctan \left (\frac {\sqrt {d} x}{\sqrt {-d x^2-e}}\right )}{\sqrt {d} e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )-d e x^4+d e}}\)

Input:

Int[(A + B*x^2)/(Sqrt[-d + e*x^2]*Sqrt[d*e + (d^2 - e^2)*x^2 - d*e*x^4]),x 
]
 

Output:

-((Sqrt[-e - d*x^2]*Sqrt[-d + e*x^2]*(-((B*ArcTan[(Sqrt[d]*x)/Sqrt[-e - d* 
x^2]])/(Sqrt[d]*e)) + ((B*d + A*e)*ArcTan[(Sqrt[d^2 + e^2]*x)/(Sqrt[d]*Sqr 
t[-e - d*x^2])])/(Sqrt[d]*e*Sqrt[d^2 + e^2])))/Sqrt[d*e + (d^2 - e^2)*x^2 
- d*e*x^4])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 1395
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*( 
x_)^(n_))^(q_.), x_Symbol] :> Simp[(a + b*x^n + c*x^(2*n))^FracPart[p]/((d 
+ e*x^n)^FracPart[p]*(a/d + c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p 
+ q)*(a/d + (c/e)*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && E 
qQ[n2, 2*n] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 
1] && EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(823\) vs. \(2(128)=256\).

Time = 0.08 (sec) , antiderivative size = 824, normalized size of antiderivative = 5.57

method result size
default \(-\frac {\sqrt {-d e \,x^{4}+d^{2} x^{2}-e^{2} x^{2}+d e}\, \left (-2 A \sqrt {d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {-d \,x^{2}-e}}\right ) \sqrt {-\frac {d^{2}+e^{2}}{e}}\, d e -2 B \sqrt {d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {-d \,x^{2}-e}}\right ) \sqrt {-\frac {d^{2}+e^{2}}{e}}\, d^{2}+2 A \sqrt {d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {\frac {\left (-d x +\sqrt {-d e}\right ) \left (d x +\sqrt {-d e}\right )}{d}}}\right ) \sqrt {-\frac {d^{2}+e^{2}}{e}}\, d e +A \ln \left (-\frac {2 \left (\sqrt {d e}\, d x -\sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e +e^{2}\right )}{e x -\sqrt {d e}}\right ) d^{\frac {5}{2}} e +A \ln \left (-\frac {2 \left (\sqrt {d e}\, d x -\sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e +e^{2}\right )}{e x -\sqrt {d e}}\right ) \sqrt {d}\, e^{3}-A \ln \left (\frac {2 \sqrt {d e}\, d x +2 \sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e -2 e^{2}}{e x +\sqrt {d e}}\right ) d^{\frac {5}{2}} e -A \ln \left (\frac {2 \sqrt {d e}\, d x +2 \sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e -2 e^{2}}{e x +\sqrt {d e}}\right ) \sqrt {d}\, e^{3}-2 B \sqrt {d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {\frac {\left (-d x +\sqrt {-d e}\right ) \left (d x +\sqrt {-d e}\right )}{d}}}\right ) \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e^{2}+B \ln \left (-\frac {2 \left (\sqrt {d e}\, d x -\sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e +e^{2}\right )}{e x -\sqrt {d e}}\right ) d^{\frac {7}{2}}+B \ln \left (-\frac {2 \left (\sqrt {d e}\, d x -\sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e +e^{2}\right )}{e x -\sqrt {d e}}\right ) d^{\frac {3}{2}} e^{2}-B \ln \left (\frac {2 \sqrt {d e}\, d x +2 \sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e -2 e^{2}}{e x +\sqrt {d e}}\right ) d^{\frac {7}{2}}-B \ln \left (\frac {2 \sqrt {d e}\, d x +2 \sqrt {-d \,x^{2}-e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}\, e -2 e^{2}}{e x +\sqrt {d e}}\right ) d^{\frac {3}{2}} e^{2}\right ) \sqrt {d}}{2 \sqrt {e \,x^{2}-d}\, \sqrt {-d \,x^{2}-e}\, \left (\sqrt {d e}\, d -\sqrt {-d e}\, e \right ) \left (\sqrt {-d e}\, e +\sqrt {d e}\, d \right ) \sqrt {d e}\, \sqrt {-\frac {d^{2}+e^{2}}{e}}}\) \(824\)

Input:

int((B*x^2+A)/(e*x^2-d)^(1/2)/(d*e+(d^2-e^2)*x^2-d*e*x^4)^(1/2),x,method=_ 
RETURNVERBOSE)
 

Output:

-1/2*(-d*e*x^4+d^2*x^2-e^2*x^2+d*e)^(1/2)*(-2*A*(d*e)^(1/2)*arctan(d^(1/2) 
*x/(-d*x^2-e)^(1/2))*(-(d^2+e^2)/e)^(1/2)*d*e-2*B*(d*e)^(1/2)*arctan(d^(1/ 
2)*x/(-d*x^2-e)^(1/2))*(-(d^2+e^2)/e)^(1/2)*d^2+2*A*(d*e)^(1/2)*arctan(d^( 
1/2)*x/(1/d*(-d*x+(-d*e)^(1/2))*(d*x+(-d*e)^(1/2)))^(1/2))*(-(d^2+e^2)/e)^ 
(1/2)*d*e+A*ln(-2*((d*e)^(1/2)*d*x-(-d*x^2-e)^(1/2)*(-(d^2+e^2)/e)^(1/2)*e 
+e^2)/(e*x-(d*e)^(1/2)))*d^(5/2)*e+A*ln(-2*((d*e)^(1/2)*d*x-(-d*x^2-e)^(1/ 
2)*(-(d^2+e^2)/e)^(1/2)*e+e^2)/(e*x-(d*e)^(1/2)))*d^(1/2)*e^3-A*ln(2*((d*e 
)^(1/2)*d*x+(-d*x^2-e)^(1/2)*(-(d^2+e^2)/e)^(1/2)*e-e^2)/(e*x+(d*e)^(1/2)) 
)*d^(5/2)*e-A*ln(2*((d*e)^(1/2)*d*x+(-d*x^2-e)^(1/2)*(-(d^2+e^2)/e)^(1/2)* 
e-e^2)/(e*x+(d*e)^(1/2)))*d^(1/2)*e^3-2*B*(d*e)^(1/2)*arctan(d^(1/2)*x/(1/ 
d*(-d*x+(-d*e)^(1/2))*(d*x+(-d*e)^(1/2)))^(1/2))*(-(d^2+e^2)/e)^(1/2)*e^2+ 
B*ln(-2*((d*e)^(1/2)*d*x-(-d*x^2-e)^(1/2)*(-(d^2+e^2)/e)^(1/2)*e+e^2)/(e*x 
-(d*e)^(1/2)))*d^(7/2)+B*ln(-2*((d*e)^(1/2)*d*x-(-d*x^2-e)^(1/2)*(-(d^2+e^ 
2)/e)^(1/2)*e+e^2)/(e*x-(d*e)^(1/2)))*d^(3/2)*e^2-B*ln(2*((d*e)^(1/2)*d*x+ 
(-d*x^2-e)^(1/2)*(-(d^2+e^2)/e)^(1/2)*e-e^2)/(e*x+(d*e)^(1/2)))*d^(7/2)-B* 
ln(2*((d*e)^(1/2)*d*x+(-d*x^2-e)^(1/2)*(-(d^2+e^2)/e)^(1/2)*e-e^2)/(e*x+(d 
*e)^(1/2)))*d^(3/2)*e^2)*d^(1/2)/(e*x^2-d)^(1/2)/(-d*x^2-e)^(1/2)/((d*e)^( 
1/2)*d-(-d*e)^(1/2)*e)/((-d*e)^(1/2)*e+(d*e)^(1/2)*d)/(d*e)^(1/2)/(-(d^2+e 
^2)/e)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 450, normalized size of antiderivative = 3.04 \[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\left [-\frac {\sqrt {-d^{3} - d e^{2}} {\left (B d + A e\right )} \log \left (\frac {2 \, d^{3} x^{2} - {\left (2 \, d^{2} e + e^{3}\right )} x^{4} + d^{2} e - 2 \, \sqrt {-d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} + d e} \sqrt {-d^{3} - d e^{2}} \sqrt {e x^{2} - d} x}{e^{2} x^{4} - 2 \, d e x^{2} + d^{2}}\right ) + {\left (B d^{2} + B e^{2}\right )} \sqrt {-d} \log \left (\frac {2 \, d e x^{4} - {\left (2 \, d^{2} - e^{2}\right )} x^{2} - 2 \, \sqrt {-d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} + d e} \sqrt {e x^{2} - d} \sqrt {-d} x - d e}{e x^{2} - d}\right )}{2 \, {\left (d^{3} e + d e^{3}\right )}}, \frac {\sqrt {d^{3} + d e^{2}} {\left (B d + A e\right )} \arctan \left (\frac {\sqrt {-d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} + d e} \sqrt {d^{3} + d e^{2}} \sqrt {e x^{2} - d} x}{d^{2} e x^{4} - d^{2} e - {\left (d^{3} - d e^{2}\right )} x^{2}}\right ) - {\left (B d^{2} + B e^{2}\right )} \sqrt {d} \arctan \left (\frac {\sqrt {-d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} + d e} \sqrt {e x^{2} - d} \sqrt {d} x}{d e x^{4} - {\left (d^{2} - e^{2}\right )} x^{2} - d e}\right )}{d^{3} e + d e^{3}}\right ] \] Input:

integrate((B*x^2+A)/(e*x^2-d)^(1/2)/(d*e+(d^2-e^2)*x^2-d*e*x^4)^(1/2),x, a 
lgorithm="fricas")
 

Output:

[-1/2*(sqrt(-d^3 - d*e^2)*(B*d + A*e)*log((2*d^3*x^2 - (2*d^2*e + e^3)*x^4 
 + d^2*e - 2*sqrt(-d*e*x^4 + (d^2 - e^2)*x^2 + d*e)*sqrt(-d^3 - d*e^2)*sqr 
t(e*x^2 - d)*x)/(e^2*x^4 - 2*d*e*x^2 + d^2)) + (B*d^2 + B*e^2)*sqrt(-d)*lo 
g((2*d*e*x^4 - (2*d^2 - e^2)*x^2 - 2*sqrt(-d*e*x^4 + (d^2 - e^2)*x^2 + d*e 
)*sqrt(e*x^2 - d)*sqrt(-d)*x - d*e)/(e*x^2 - d)))/(d^3*e + d*e^3), (sqrt(d 
^3 + d*e^2)*(B*d + A*e)*arctan(sqrt(-d*e*x^4 + (d^2 - e^2)*x^2 + d*e)*sqrt 
(d^3 + d*e^2)*sqrt(e*x^2 - d)*x/(d^2*e*x^4 - d^2*e - (d^3 - d*e^2)*x^2)) - 
 (B*d^2 + B*e^2)*sqrt(d)*arctan(sqrt(-d*e*x^4 + (d^2 - e^2)*x^2 + d*e)*sqr 
t(e*x^2 - d)*sqrt(d)*x/(d*e*x^4 - (d^2 - e^2)*x^2 - d*e)))/(d^3*e + d*e^3) 
]
 

Sympy [F]

\[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\int \frac {A + B x^{2}}{\sqrt {- \left (- d + e x^{2}\right ) \left (d x^{2} + e\right )} \sqrt {- d + e x^{2}}}\, dx \] Input:

integrate((B*x**2+A)/(e*x**2-d)**(1/2)/(d*e+(d**2-e**2)*x**2-d*e*x**4)**(1 
/2),x)
 

Output:

Integral((A + B*x**2)/(sqrt(-(-d + e*x**2)*(d*x**2 + e))*sqrt(-d + e*x**2) 
), x)
 

Maxima [F]

\[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\int { \frac {B x^{2} + A}{\sqrt {-d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} + d e} \sqrt {e x^{2} - d}} \,d x } \] Input:

integrate((B*x^2+A)/(e*x^2-d)^(1/2)/(d*e+(d^2-e^2)*x^2-d*e*x^4)^(1/2),x, a 
lgorithm="maxima")
 

Output:

integrate((B*x^2 + A)/(sqrt(-d*e*x^4 + (d^2 - e^2)*x^2 + d*e)*sqrt(e*x^2 - 
 d)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\text {Timed out} \] Input:

integrate((B*x^2+A)/(e*x^2-d)^(1/2)/(d*e+(d^2-e^2)*x^2-d*e*x^4)^(1/2),x, a 
lgorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\int \frac {B\,x^2+A}{\sqrt {e\,x^2-d}\,\sqrt {-d\,e\,x^4+\left (d^2-e^2\right )\,x^2+d\,e}} \,d x \] Input:

int((A + B*x^2)/((e*x^2 - d)^(1/2)*(d*e + x^2*(d^2 - e^2) - d*e*x^4)^(1/2) 
),x)
 

Output:

int((A + B*x^2)/((e*x^2 - d)^(1/2)*(d*e + x^2*(d^2 - e^2) - d*e*x^4)^(1/2) 
), x)
 

Reduce [B] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 351, normalized size of antiderivative = 2.37 \[ \int \frac {A+B x^2}{\sqrt {-d+e x^2} \sqrt {d e+\left (d^2-e^2\right ) x^2-d e x^4}} \, dx=\frac {\sqrt {d}\, i \left (-2 \mathit {asinh} \left (\frac {\sqrt {d}\, x}{\sqrt {e}}\right ) b \,d^{2}-2 \mathit {asinh} \left (\frac {\sqrt {d}\, x}{\sqrt {e}}\right ) b \,e^{2}+\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (2 \sqrt {d^{2}+e^{2}}\, d +2 \sqrt {d}\, \sqrt {d \,x^{2}+e}\, e x -2 d^{2}+2 d e \,x^{2}\right ) a e +\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (2 \sqrt {d^{2}+e^{2}}\, d +2 \sqrt {d}\, \sqrt {d \,x^{2}+e}\, e x -2 d^{2}+2 d e \,x^{2}\right ) b d -\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {-\sqrt {e}\, \sqrt {d^{2}+e^{2}}+\sqrt {d \,x^{2}+e}\, e +\sqrt {d}\, e x -\sqrt {e}\, d}{\sqrt {e}}\right ) a e -\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {-\sqrt {e}\, \sqrt {d^{2}+e^{2}}+\sqrt {d \,x^{2}+e}\, e +\sqrt {d}\, e x -\sqrt {e}\, d}{\sqrt {e}}\right ) b d -\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {d^{2}+e^{2}}+\sqrt {d \,x^{2}+e}\, e +\sqrt {d}\, e x +\sqrt {e}\, d}{\sqrt {e}}\right ) a e -\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {d^{2}+e^{2}}+\sqrt {d \,x^{2}+e}\, e +\sqrt {d}\, e x +\sqrt {e}\, d}{\sqrt {e}}\right ) b d \right )}{2 d e \left (d^{2}+e^{2}\right )} \] Input:

int((B*x^2+A)/(e*x^2-d)^(1/2)/(d*e+(d^2-e^2)*x^2-d*e*x^4)^(1/2),x)
 

Output:

(sqrt(d)*i*( - 2*asinh((sqrt(d)*x)/sqrt(e))*b*d**2 - 2*asinh((sqrt(d)*x)/s 
qrt(e))*b*e**2 + sqrt(d**2 + e**2)*log(2*sqrt(d**2 + e**2)*d + 2*sqrt(d)*s 
qrt(d*x**2 + e)*e*x - 2*d**2 + 2*d*e*x**2)*a*e + sqrt(d**2 + e**2)*log(2*s 
qrt(d**2 + e**2)*d + 2*sqrt(d)*sqrt(d*x**2 + e)*e*x - 2*d**2 + 2*d*e*x**2) 
*b*d - sqrt(d**2 + e**2)*log(( - sqrt(e)*sqrt(d**2 + e**2) + sqrt(d*x**2 + 
 e)*e + sqrt(d)*e*x - sqrt(e)*d)/sqrt(e))*a*e - sqrt(d**2 + e**2)*log(( - 
sqrt(e)*sqrt(d**2 + e**2) + sqrt(d*x**2 + e)*e + sqrt(d)*e*x - sqrt(e)*d)/ 
sqrt(e))*b*d - sqrt(d**2 + e**2)*log((sqrt(e)*sqrt(d**2 + e**2) + sqrt(d*x 
**2 + e)*e + sqrt(d)*e*x + sqrt(e)*d)/sqrt(e))*a*e - sqrt(d**2 + e**2)*log 
((sqrt(e)*sqrt(d**2 + e**2) + sqrt(d*x**2 + e)*e + sqrt(d)*e*x + sqrt(e)*d 
)/sqrt(e))*b*d))/(2*d*e*(d**2 + e**2))