\(\int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+(d^2-e^2) x^2+d e x^4}} \, dx\) [145]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 50, antiderivative size = 151 \[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=-\frac {B \arctan \left (\frac {\sqrt {d} x \sqrt {-d-e x^2}}{\sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}}\right )}{\sqrt {d} e}+\frac {(B d-A e) \arctan \left (\frac {\sqrt {d^2+e^2} x \sqrt {-d-e x^2}}{\sqrt {d} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}}\right )}{\sqrt {d} e \sqrt {d^2+e^2}} \] Output:

-B*arctan(d^(1/2)*x*(-e*x^2-d)^(1/2)/(-d*e+(d^2-e^2)*x^2+d*e*x^4)^(1/2))/d 
^(1/2)/e+(-A*e+B*d)*arctan((d^2+e^2)^(1/2)*x*(-e*x^2-d)^(1/2)/d^(1/2)/(-d* 
e+(d^2-e^2)*x^2+d*e*x^4)^(1/2))/d^(1/2)/e/(d^2+e^2)^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.48 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.17 \[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=\frac {\frac {(B d-A e) \sqrt {e-d x^2} \sqrt {-d-e x^2} \arctan \left (\frac {\sqrt {d^2+e^2} x}{\sqrt {d} \sqrt {e-d x^2}}\right )}{\sqrt {d^2+e^2} \sqrt {d^2 x^2-e^2 x^2+d e \left (-1+x^4\right )}}+i B \log \left (-2 i \sqrt {d} x-\frac {2 \sqrt {d^2 x^2-e^2 x^2+d e \left (-1+x^4\right )}}{\sqrt {-d-e x^2}}\right )}{\sqrt {d} e} \] Input:

Integrate[(A + B*x^2)/(Sqrt[-d - e*x^2]*Sqrt[-(d*e) + (d^2 - e^2)*x^2 + d* 
e*x^4]),x]
 

Output:

(((B*d - A*e)*Sqrt[e - d*x^2]*Sqrt[-d - e*x^2]*ArcTan[(Sqrt[d^2 + e^2]*x)/ 
(Sqrt[d]*Sqrt[e - d*x^2])])/(Sqrt[d^2 + e^2]*Sqrt[d^2*x^2 - e^2*x^2 + d*e* 
(-1 + x^4)]) + I*B*Log[(-2*I)*Sqrt[d]*x - (2*Sqrt[d^2*x^2 - e^2*x^2 + d*e* 
(-1 + x^4)])/Sqrt[-d - e*x^2]])/(Sqrt[d]*e)
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {1395, 25, 398, 224, 216, 291, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}} \, dx\)

\(\Big \downarrow \) 1395

\(\displaystyle \frac {\sqrt {e-d x^2} \sqrt {-d-e x^2} \int -\frac {B x^2+A}{\sqrt {e-d x^2} \left (e x^2+d\right )}dx}{\sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt {e-d x^2} \sqrt {-d-e x^2} \int \frac {B x^2+A}{\sqrt {e-d x^2} \left (e x^2+d\right )}dx}{\sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}}\)

\(\Big \downarrow \) 398

\(\displaystyle -\frac {\sqrt {e-d x^2} \sqrt {-d-e x^2} \left (\frac {B \int \frac {1}{\sqrt {e-d x^2}}dx}{e}-\frac {(B d-A e) \int \frac {1}{\sqrt {e-d x^2} \left (e x^2+d\right )}dx}{e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}}\)

\(\Big \downarrow \) 224

\(\displaystyle -\frac {\sqrt {e-d x^2} \sqrt {-d-e x^2} \left (\frac {B \int \frac {1}{\frac {d x^2}{e-d x^2}+1}d\frac {x}{\sqrt {e-d x^2}}}{e}-\frac {(B d-A e) \int \frac {1}{\sqrt {e-d x^2} \left (e x^2+d\right )}dx}{e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {\sqrt {e-d x^2} \sqrt {-d-e x^2} \left (\frac {B \arctan \left (\frac {\sqrt {d} x}{\sqrt {e-d x^2}}\right )}{\sqrt {d} e}-\frac {(B d-A e) \int \frac {1}{\sqrt {e-d x^2} \left (e x^2+d\right )}dx}{e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}}\)

\(\Big \downarrow \) 291

\(\displaystyle -\frac {\sqrt {e-d x^2} \sqrt {-d-e x^2} \left (\frac {B \arctan \left (\frac {\sqrt {d} x}{\sqrt {e-d x^2}}\right )}{\sqrt {d} e}-\frac {(B d-A e) \int \frac {1}{d-\frac {\left (-d^2-e^2\right ) x^2}{e-d x^2}}d\frac {x}{\sqrt {e-d x^2}}}{e}\right )}{\sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\sqrt {e-d x^2} \sqrt {-d-e x^2} \left (\frac {B \arctan \left (\frac {\sqrt {d} x}{\sqrt {e-d x^2}}\right )}{\sqrt {d} e}-\frac {(B d-A e) \arctan \left (\frac {x \sqrt {d^2+e^2}}{\sqrt {d} \sqrt {e-d x^2}}\right )}{\sqrt {d} e \sqrt {d^2+e^2}}\right )}{\sqrt {x^2 \left (d^2-e^2\right )+d e x^4-d e}}\)

Input:

Int[(A + B*x^2)/(Sqrt[-d - e*x^2]*Sqrt[-(d*e) + (d^2 - e^2)*x^2 + d*e*x^4] 
),x]
 

Output:

-((Sqrt[e - d*x^2]*Sqrt[-d - e*x^2]*((B*ArcTan[(Sqrt[d]*x)/Sqrt[e - d*x^2] 
])/(Sqrt[d]*e) - ((B*d - A*e)*ArcTan[(Sqrt[d^2 + e^2]*x)/(Sqrt[d]*Sqrt[e - 
 d*x^2])])/(Sqrt[d]*e*Sqrt[d^2 + e^2])))/Sqrt[-(d*e) + (d^2 - e^2)*x^2 + d 
*e*x^4])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 1395
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*( 
x_)^(n_))^(q_.), x_Symbol] :> Simp[(a + b*x^n + c*x^(2*n))^FracPart[p]/((d 
+ e*x^n)^FracPart[p]*(a/d + c*(x^n/e))^FracPart[p])   Int[u*(d + e*x^n)^(p 
+ q)*(a/d + (c/e)*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && E 
qQ[n2, 2*n] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !(EqQ[q, 
1] && EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(806\) vs. \(2(131)=262\).

Time = 0.09 (sec) , antiderivative size = 807, normalized size of antiderivative = 5.34

method result size
default \(-\frac {\sqrt {d e \,x^{4}+d^{2} x^{2}-e^{2} x^{2}-d e}\, \left (2 A \sqrt {-d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {-d \,x^{2}+e}}\right ) d \sqrt {\frac {d^{2}+e^{2}}{e}}\, e -2 B \sqrt {-d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {-d \,x^{2}+e}}\right ) d^{2} \sqrt {\frac {d^{2}+e^{2}}{e}}-2 A \sqrt {-d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {\frac {\left (d x +\sqrt {d e}\right ) \left (-d x +\sqrt {d e}\right )}{d}}}\right ) \sqrt {\frac {d^{2}+e^{2}}{e}}\, d e +A \ln \left (-\frac {2 \left (\sqrt {-d e}\, d x -\sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e -e^{2}\right )}{e x -\sqrt {-d e}}\right ) d^{\frac {5}{2}} e +A \ln \left (-\frac {2 \left (\sqrt {-d e}\, d x -\sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e -e^{2}\right )}{e x -\sqrt {-d e}}\right ) \sqrt {d}\, e^{3}-A \ln \left (\frac {2 \sqrt {-d e}\, d x +2 \sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e +2 e^{2}}{e x +\sqrt {-d e}}\right ) d^{\frac {5}{2}} e -A \ln \left (\frac {2 \sqrt {-d e}\, d x +2 \sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e +2 e^{2}}{e x +\sqrt {-d e}}\right ) \sqrt {d}\, e^{3}-2 B \sqrt {-d e}\, \arctan \left (\frac {\sqrt {d}\, x}{\sqrt {\frac {\left (d x +\sqrt {d e}\right ) \left (-d x +\sqrt {d e}\right )}{d}}}\right ) \sqrt {\frac {d^{2}+e^{2}}{e}}\, e^{2}-B \ln \left (-\frac {2 \left (\sqrt {-d e}\, d x -\sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e -e^{2}\right )}{e x -\sqrt {-d e}}\right ) d^{\frac {7}{2}}-B \ln \left (-\frac {2 \left (\sqrt {-d e}\, d x -\sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e -e^{2}\right )}{e x -\sqrt {-d e}}\right ) d^{\frac {3}{2}} e^{2}+B \ln \left (\frac {2 \sqrt {-d e}\, d x +2 \sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e +2 e^{2}}{e x +\sqrt {-d e}}\right ) d^{\frac {7}{2}}+B \ln \left (\frac {2 \sqrt {-d e}\, d x +2 \sqrt {-d \,x^{2}+e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}\, e +2 e^{2}}{e x +\sqrt {-d e}}\right ) d^{\frac {3}{2}} e^{2}\right ) \sqrt {d}}{2 \sqrt {-e \,x^{2}-d}\, \sqrt {-d \,x^{2}+e}\, \left (\sqrt {-d e}\, d +e \sqrt {d e}\right ) \left (\sqrt {-d e}\, d -e \sqrt {d e}\right ) \sqrt {-d e}\, \sqrt {\frac {d^{2}+e^{2}}{e}}}\) \(807\)

Input:

int((B*x^2+A)/(-e*x^2-d)^(1/2)/(-d*e+(d^2-e^2)*x^2+d*e*x^4)^(1/2),x,method 
=_RETURNVERBOSE)
 

Output:

-1/2*(d*e*x^4+d^2*x^2-e^2*x^2-d*e)^(1/2)*(2*A*(-d*e)^(1/2)*arctan(d^(1/2)* 
x/(-d*x^2+e)^(1/2))*d*((d^2+e^2)/e)^(1/2)*e-2*B*(-d*e)^(1/2)*arctan(d^(1/2 
)*x/(-d*x^2+e)^(1/2))*d^2*((d^2+e^2)/e)^(1/2)-2*A*(-d*e)^(1/2)*arctan(d^(1 
/2)*x/(1/d*(d*x+(d*e)^(1/2))*(-d*x+(d*e)^(1/2)))^(1/2))*((d^2+e^2)/e)^(1/2 
)*d*e+A*ln(-2*((-d*e)^(1/2)*d*x-(-d*x^2+e)^(1/2)*((d^2+e^2)/e)^(1/2)*e-e^2 
)/(e*x-(-d*e)^(1/2)))*d^(5/2)*e+A*ln(-2*((-d*e)^(1/2)*d*x-(-d*x^2+e)^(1/2) 
*((d^2+e^2)/e)^(1/2)*e-e^2)/(e*x-(-d*e)^(1/2)))*d^(1/2)*e^3-A*ln(2*((-d*e) 
^(1/2)*d*x+(-d*x^2+e)^(1/2)*((d^2+e^2)/e)^(1/2)*e+e^2)/(e*x+(-d*e)^(1/2))) 
*d^(5/2)*e-A*ln(2*((-d*e)^(1/2)*d*x+(-d*x^2+e)^(1/2)*((d^2+e^2)/e)^(1/2)*e 
+e^2)/(e*x+(-d*e)^(1/2)))*d^(1/2)*e^3-2*B*(-d*e)^(1/2)*arctan(d^(1/2)*x/(1 
/d*(d*x+(d*e)^(1/2))*(-d*x+(d*e)^(1/2)))^(1/2))*((d^2+e^2)/e)^(1/2)*e^2-B* 
ln(-2*((-d*e)^(1/2)*d*x-(-d*x^2+e)^(1/2)*((d^2+e^2)/e)^(1/2)*e-e^2)/(e*x-( 
-d*e)^(1/2)))*d^(7/2)-B*ln(-2*((-d*e)^(1/2)*d*x-(-d*x^2+e)^(1/2)*((d^2+e^2 
)/e)^(1/2)*e-e^2)/(e*x-(-d*e)^(1/2)))*d^(3/2)*e^2+B*ln(2*((-d*e)^(1/2)*d*x 
+(-d*x^2+e)^(1/2)*((d^2+e^2)/e)^(1/2)*e+e^2)/(e*x+(-d*e)^(1/2)))*d^(7/2)+B 
*ln(2*((-d*e)^(1/2)*d*x+(-d*x^2+e)^(1/2)*((d^2+e^2)/e)^(1/2)*e+e^2)/(e*x+( 
-d*e)^(1/2)))*d^(3/2)*e^2)/(-e*x^2-d)^(1/2)/(-d*x^2+e)^(1/2)/((-d*e)^(1/2) 
*d+e*(d*e)^(1/2))/((-d*e)^(1/2)*d-e*(d*e)^(1/2))*d^(1/2)/(-d*e)^(1/2)/((d^ 
2+e^2)/e)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 428, normalized size of antiderivative = 2.83 \[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=\left [\frac {\sqrt {-d^{3} - d e^{2}} {\left (B d - A e\right )} \log \left (-\frac {2 \, d^{3} x^{2} + {\left (2 \, d^{2} e + e^{3}\right )} x^{4} - d^{2} e - 2 \, \sqrt {d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} - d e} \sqrt {-d^{3} - d e^{2}} \sqrt {-e x^{2} - d} x}{e^{2} x^{4} + 2 \, d e x^{2} + d^{2}}\right ) - {\left (B d^{2} + B e^{2}\right )} \sqrt {-d} \log \left (-\frac {2 \, d e x^{4} + {\left (2 \, d^{2} - e^{2}\right )} x^{2} - 2 \, \sqrt {d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} - d e} \sqrt {-e x^{2} - d} \sqrt {-d} x - d e}{e x^{2} + d}\right )}{2 \, {\left (d^{3} e + d e^{3}\right )}}, \frac {\sqrt {d^{3} + d e^{2}} {\left (B d - A e\right )} \arctan \left (\frac {\sqrt {d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} - d e} \sqrt {d^{3} + d e^{2}} \sqrt {-e x^{2} - d} x}{d^{2} e x^{4} - d^{2} e + {\left (d^{3} - d e^{2}\right )} x^{2}}\right ) - {\left (B d^{2} + B e^{2}\right )} \sqrt {d} \arctan \left (\frac {\sqrt {-e x^{2} - d} \sqrt {d} x}{\sqrt {d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} - d e}}\right )}{d^{3} e + d e^{3}}\right ] \] Input:

integrate((B*x^2+A)/(-e*x^2-d)^(1/2)/(-d*e+(d^2-e^2)*x^2+d*e*x^4)^(1/2),x, 
 algorithm="fricas")
 

Output:

[1/2*(sqrt(-d^3 - d*e^2)*(B*d - A*e)*log(-(2*d^3*x^2 + (2*d^2*e + e^3)*x^4 
 - d^2*e - 2*sqrt(d*e*x^4 + (d^2 - e^2)*x^2 - d*e)*sqrt(-d^3 - d*e^2)*sqrt 
(-e*x^2 - d)*x)/(e^2*x^4 + 2*d*e*x^2 + d^2)) - (B*d^2 + B*e^2)*sqrt(-d)*lo 
g(-(2*d*e*x^4 + (2*d^2 - e^2)*x^2 - 2*sqrt(d*e*x^4 + (d^2 - e^2)*x^2 - d*e 
)*sqrt(-e*x^2 - d)*sqrt(-d)*x - d*e)/(e*x^2 + d)))/(d^3*e + d*e^3), (sqrt( 
d^3 + d*e^2)*(B*d - A*e)*arctan(sqrt(d*e*x^4 + (d^2 - e^2)*x^2 - d*e)*sqrt 
(d^3 + d*e^2)*sqrt(-e*x^2 - d)*x/(d^2*e*x^4 - d^2*e + (d^3 - d*e^2)*x^2)) 
- (B*d^2 + B*e^2)*sqrt(d)*arctan(sqrt(-e*x^2 - d)*sqrt(d)*x/sqrt(d*e*x^4 + 
 (d^2 - e^2)*x^2 - d*e)))/(d^3*e + d*e^3)]
 

Sympy [F]

\[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=\int \frac {A + B x^{2}}{\sqrt {\left (d + e x^{2}\right ) \left (d x^{2} - e\right )} \sqrt {- d - e x^{2}}}\, dx \] Input:

integrate((B*x**2+A)/(-e*x**2-d)**(1/2)/(-d*e+(d**2-e**2)*x**2+d*e*x**4)** 
(1/2),x)
 

Output:

Integral((A + B*x**2)/(sqrt((d + e*x**2)*(d*x**2 - e))*sqrt(-d - e*x**2)), 
 x)
 

Maxima [F]

\[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=\int { \frac {B x^{2} + A}{\sqrt {d e x^{4} + {\left (d^{2} - e^{2}\right )} x^{2} - d e} \sqrt {-e x^{2} - d}} \,d x } \] Input:

integrate((B*x^2+A)/(-e*x^2-d)^(1/2)/(-d*e+(d^2-e^2)*x^2+d*e*x^4)^(1/2),x, 
 algorithm="maxima")
 

Output:

integrate((B*x^2 + A)/(sqrt(d*e*x^4 + (d^2 - e^2)*x^2 - d*e)*sqrt(-e*x^2 - 
 d)), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=\text {Timed out} \] Input:

integrate((B*x^2+A)/(-e*x^2-d)^(1/2)/(-d*e+(d^2-e^2)*x^2+d*e*x^4)^(1/2),x, 
 algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=\int \frac {B\,x^2+A}{\sqrt {-e\,x^2-d}\,\sqrt {d\,e\,x^4+\left (d^2-e^2\right )\,x^2-d\,e}} \,d x \] Input:

int((A + B*x^2)/((- d - e*x^2)^(1/2)*(x^2*(d^2 - e^2) - d*e + d*e*x^4)^(1/ 
2)),x)
 

Output:

int((A + B*x^2)/((- d - e*x^2)^(1/2)*(x^2*(d^2 - e^2) - d*e + d*e*x^4)^(1/ 
2)), x)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 394, normalized size of antiderivative = 2.61 \[ \int \frac {A+B x^2}{\sqrt {-d-e x^2} \sqrt {-d e+\left (d^2-e^2\right ) x^2+d e x^4}} \, dx=\frac {\sqrt {d}\, i \left (\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (2 \sqrt {d^{2}+e^{2}}\, d +2 \sqrt {d}\, \sqrt {d \,x^{2}-e}\, e x +2 d^{2}+2 d e \,x^{2}\right ) a e -\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (2 \sqrt {d^{2}+e^{2}}\, d +2 \sqrt {d}\, \sqrt {d \,x^{2}-e}\, e x +2 d^{2}+2 d e \,x^{2}\right ) b d -\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {-\sqrt {e}\, \sqrt {d^{2}+e^{2}}\, i +\sqrt {d \,x^{2}-e}\, e +\sqrt {d}\, e x +\sqrt {e}\, d i}{\sqrt {e}}\right ) a e +\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {-\sqrt {e}\, \sqrt {d^{2}+e^{2}}\, i +\sqrt {d \,x^{2}-e}\, e +\sqrt {d}\, e x +\sqrt {e}\, d i}{\sqrt {e}}\right ) b d -\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {d^{2}+e^{2}}\, i +\sqrt {d \,x^{2}-e}\, e +\sqrt {d}\, e x -\sqrt {e}\, d i}{\sqrt {e}}\right ) a e +\sqrt {d^{2}+e^{2}}\, \mathrm {log}\left (\frac {\sqrt {e}\, \sqrt {d^{2}+e^{2}}\, i +\sqrt {d \,x^{2}-e}\, e +\sqrt {d}\, e x -\sqrt {e}\, d i}{\sqrt {e}}\right ) b d -2 \,\mathrm {log}\left (\frac {\sqrt {d \,x^{2}-e}+\sqrt {d}\, x}{\sqrt {e}}\right ) b \,d^{2}-2 \,\mathrm {log}\left (\frac {\sqrt {d \,x^{2}-e}+\sqrt {d}\, x}{\sqrt {e}}\right ) b \,e^{2}\right )}{2 d e \left (d^{2}+e^{2}\right )} \] Input:

int((B*x^2+A)/(-e*x^2-d)^(1/2)/(-d*e+(d^2-e^2)*x^2+d*e*x^4)^(1/2),x)
 

Output:

(sqrt(d)*i*(sqrt(d**2 + e**2)*log(2*sqrt(d**2 + e**2)*d + 2*sqrt(d)*sqrt(d 
*x**2 - e)*e*x + 2*d**2 + 2*d*e*x**2)*a*e - sqrt(d**2 + e**2)*log(2*sqrt(d 
**2 + e**2)*d + 2*sqrt(d)*sqrt(d*x**2 - e)*e*x + 2*d**2 + 2*d*e*x**2)*b*d 
- sqrt(d**2 + e**2)*log(( - sqrt(e)*sqrt(d**2 + e**2)*i + sqrt(d*x**2 - e) 
*e + sqrt(d)*e*x + sqrt(e)*d*i)/sqrt(e))*a*e + sqrt(d**2 + e**2)*log(( - s 
qrt(e)*sqrt(d**2 + e**2)*i + sqrt(d*x**2 - e)*e + sqrt(d)*e*x + sqrt(e)*d* 
i)/sqrt(e))*b*d - sqrt(d**2 + e**2)*log((sqrt(e)*sqrt(d**2 + e**2)*i + sqr 
t(d*x**2 - e)*e + sqrt(d)*e*x - sqrt(e)*d*i)/sqrt(e))*a*e + sqrt(d**2 + e* 
*2)*log((sqrt(e)*sqrt(d**2 + e**2)*i + sqrt(d*x**2 - e)*e + sqrt(d)*e*x - 
sqrt(e)*d*i)/sqrt(e))*b*d - 2*log((sqrt(d*x**2 - e) + sqrt(d)*x)/sqrt(e))* 
b*d**2 - 2*log((sqrt(d*x**2 - e) + sqrt(d)*x)/sqrt(e))*b*e**2))/(2*d*e*(d* 
*2 + e**2))