\(\int \frac {x^8}{1+3 x^4+x^8} \, dx\) [111]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 342 \[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=x-\frac {\sqrt [4]{123-55 \sqrt {5}} \arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2\ 2^{3/4} \sqrt {5}}+\frac {\sqrt [4]{123-55 \sqrt {5}} \arctan \left (1+\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2\ 2^{3/4} \sqrt {5}}+\frac {\sqrt [4]{123+55 \sqrt {5}} \arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2\ 2^{3/4} \sqrt {5}}-\frac {\sqrt [4]{123+55 \sqrt {5}} \arctan \left (1+\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2\ 2^{3/4} \sqrt {5}}+\frac {\sqrt [4]{123-55 \sqrt {5}} \text {arctanh}\left (\frac {2^{3/4} \sqrt [4]{3-\sqrt {5}} x}{\sqrt {3-\sqrt {5}}+\sqrt {2} x^2}\right )}{2\ 2^{3/4} \sqrt {5}}-\frac {\sqrt [4]{123+55 \sqrt {5}} \text {arctanh}\left (\frac {2^{3/4} \sqrt [4]{3+\sqrt {5}} x}{\sqrt {3+\sqrt {5}}+\sqrt {2} x^2}\right )}{2\ 2^{3/4} \sqrt {5}} \] Output:

x+1/20*(123-55*5^(1/2))^(1/4)*arctan(-1+2^(3/4)*x/(3-5^(1/2))^(1/4))*2^(1/ 
4)*5^(1/2)+1/20*(123-55*5^(1/2))^(1/4)*arctan(1+2^(3/4)*x/(3-5^(1/2))^(1/4 
))*2^(1/4)*5^(1/2)-1/20*(123+55*5^(1/2))^(1/4)*arctan(-1+2^(3/4)*x/(3+5^(1 
/2))^(1/4))*2^(1/4)*5^(1/2)-1/20*(123+55*5^(1/2))^(1/4)*arctan(1+2^(3/4)*x 
/(3+5^(1/2))^(1/4))*2^(1/4)*5^(1/2)+1/20*(123-55*5^(1/2))^(1/4)*arctanh(2^ 
(3/4)*(3-5^(1/2))^(1/4)*x/(1/2*10^(1/2)-1/2*2^(1/2)+x^2*2^(1/2)))*2^(1/4)* 
5^(1/2)-1/20*(123+55*5^(1/2))^(1/4)*arctanh(2^(3/4)*(3+5^(1/2))^(1/4)*x/(1 
/2*10^(1/2)+1/2*2^(1/2)+x^2*2^(1/2)))*2^(1/4)*5^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.17 \[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=x-\frac {1}{4} \text {RootSum}\left [1+3 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {\log (x-\text {$\#$1})+3 \log (x-\text {$\#$1}) \text {$\#$1}^4}{3 \text {$\#$1}^3+2 \text {$\#$1}^7}\&\right ] \] Input:

Integrate[x^8/(1 + 3*x^4 + x^8),x]
 

Output:

x - RootSum[1 + 3*#1^4 + #1^8 & , (Log[x - #1] + 3*Log[x - #1]*#1^4)/(3*#1 
^3 + 2*#1^7) & ]/4
 

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 480, normalized size of antiderivative = 1.40, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.625, Rules used = {1703, 1752, 755, 27, 1476, 1082, 217, 1479, 25, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^8}{x^8+3 x^4+1} \, dx\)

\(\Big \downarrow \) 1703

\(\displaystyle x-\int \frac {3 x^4+1}{x^8+3 x^4+1}dx\)

\(\Big \downarrow \) 1752

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \int \frac {1}{x^4+\frac {1}{2} \left (3-\sqrt {5}\right )}dx-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \int \frac {1}{x^4+\frac {1}{2} \left (3+\sqrt {5}\right )}dx+x\)

\(\Big \downarrow \) 755

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {\int \frac {2 \left (\sqrt {3-\sqrt {5}}-\sqrt {2} x^2\right )}{2 x^4-\sqrt {5}+3}dx}{2 \sqrt {3-\sqrt {5}}}+\frac {\int \frac {2 \left (\sqrt {2} x^2+\sqrt {3-\sqrt {5}}\right )}{2 x^4-\sqrt {5}+3}dx}{2 \sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {\int \frac {2 \left (\sqrt {3+\sqrt {5}}-\sqrt {2} x^2\right )}{2 x^4+\sqrt {5}+3}dx}{2 \sqrt {3+\sqrt {5}}}+\frac {\int \frac {2 \left (\sqrt {2} x^2+\sqrt {3+\sqrt {5}}\right )}{2 x^4+\sqrt {5}+3}dx}{2 \sqrt {3+\sqrt {5}}}\right )+x\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{\sqrt {3-\sqrt {5}}}+\frac {\int \frac {\sqrt {2} x^2+\sqrt {3-\sqrt {5}}}{2 x^4-\sqrt {5}+3}dx}{\sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{\sqrt {3+\sqrt {5}}}+\frac {\int \frac {\sqrt {2} x^2+\sqrt {3+\sqrt {5}}}{2 x^4+\sqrt {5}+3}dx}{\sqrt {3+\sqrt {5}}}\right )+x\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {\frac {\int \frac {1}{x^2-\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{2 \sqrt {2}}+\frac {\int \frac {1}{x^2+\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{2 \sqrt {2}}}{\sqrt {3-\sqrt {5}}}+\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{\sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {\frac {\int \frac {1}{x^2-\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2 \sqrt {2}}+\frac {\int \frac {1}{x^2+\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2 \sqrt {2}}}{\sqrt {3+\sqrt {5}}}+\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{\sqrt {3+\sqrt {5}}}\right )+x\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{\sqrt {3-\sqrt {5}}}+\frac {\frac {\int \frac {1}{-\left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )^2-1}d\left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\int \frac {1}{-\left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )^2-1}d\left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{\sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{\sqrt {3+\sqrt {5}}}+\frac {\frac {\int \frac {1}{-\left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )^2-1}d\left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\int \frac {1}{-\left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )^2-1}d\left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}\right )+x\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{\sqrt {3-\sqrt {5}}}+\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{\sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{\sqrt {3+\sqrt {5}}}+\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}\right )+x\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {-\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int -\frac {\sqrt [4]{2 \left (3-\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx-\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int -\frac {2 x+\sqrt [4]{2 \left (3-\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{\sqrt {3-\sqrt {5}}}+\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{\sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {-\frac {\int -\frac {\sqrt [4]{2 \left (3+\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\int -\frac {2 x+\sqrt [4]{2 \left (3+\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}+\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}\right )+x\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int \frac {\sqrt [4]{2 \left (3-\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx+\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int \frac {2 x+\sqrt [4]{2 \left (3-\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{\sqrt {3-\sqrt {5}}}+\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{\sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {\frac {\int \frac {\sqrt [4]{2 \left (3+\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}+\frac {\int \frac {2 x+\sqrt [4]{2 \left (3+\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}+\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}\right )+x\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {1}{10} \left (15-7 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{\sqrt {3-\sqrt {5}}}+\frac {\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \log \left (2 x^2+2 \sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {2 \left (3-\sqrt {5}\right )}\right )-\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \log \left (2 x^2-2 \sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {2 \left (3-\sqrt {5}\right )}\right )}{\sqrt {3-\sqrt {5}}}\right )-\frac {1}{10} \left (15+7 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}+\frac {\frac {\log \left (2 x^2+2 \sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {2 \left (3+\sqrt {5}\right )}\right )}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\log \left (2 x^2-2 \sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {2 \left (3+\sqrt {5}\right )}\right )}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{\sqrt {3+\sqrt {5}}}\right )+x\)

Input:

Int[x^8/(1 + 3*x^4 + x^8),x]
 

Output:

x - ((15 - 7*Sqrt[5])*((-(ArcTan[1 - (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)]/(2^( 
3/4)*(3 - Sqrt[5])^(1/4))) + ArcTan[1 + (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)]/( 
2^(3/4)*(3 - Sqrt[5])^(1/4)))/Sqrt[3 - Sqrt[5]] + (-1/4*(((3 + Sqrt[5])/2) 
^(1/4)*Log[Sqrt[2*(3 - Sqrt[5])] - 2*(2*(3 - Sqrt[5]))^(1/4)*x + 2*x^2]) + 
 (((3 + Sqrt[5])/2)^(1/4)*Log[Sqrt[2*(3 - Sqrt[5])] + 2*(2*(3 - Sqrt[5]))^ 
(1/4)*x + 2*x^2])/4)/Sqrt[3 - Sqrt[5]]))/10 - ((15 + 7*Sqrt[5])*((-(ArcTan 
[1 - (2^(3/4)*x)/(3 + Sqrt[5])^(1/4)]/(2^(3/4)*(3 + Sqrt[5])^(1/4))) + Arc 
Tan[1 + (2^(3/4)*x)/(3 + Sqrt[5])^(1/4)]/(2^(3/4)*(3 + Sqrt[5])^(1/4)))/Sq 
rt[3 + Sqrt[5]] + (-1/2*Log[Sqrt[2*(3 + Sqrt[5])] - 2*(2*(3 + Sqrt[5]))^(1 
/4)*x + 2*x^2]/(2^(3/4)*(3 + Sqrt[5])^(1/4)) + Log[Sqrt[2*(3 + Sqrt[5])] + 
 2*(2*(3 + Sqrt[5]))^(1/4)*x + 2*x^2]/(2*2^(3/4)*(3 + Sqrt[5])^(1/4)))/Sqr 
t[3 + Sqrt[5]]))/10
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1703
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[d^(2*n - 1)*(d*x)^(m - 2*n + 1)*((a + b*x^n + c*x^(2*n))^( 
p + 1)/(c*(m + 2*n*p + 1))), x] - Simp[d^(2*n)/(c*(m + 2*n*p + 1))   Int[(d 
*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x 
^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && N 
eQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n*p + 1, 0 
] && IntegerQ[p]
 

rule 1752
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) 
   Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   I 
nt[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2 
, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 
 - 4*a*c] ||  !IGtQ[n/2, 0])
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.04 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.13

method result size
default \(x +\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+3 \textit {\_Z}^{4}+1\right )}{\sum }\frac {\left (-3 \textit {\_R}^{4}-1\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7}+3 \textit {\_R}^{3}}\right )}{4}\) \(46\)
risch \(x +\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+3 \textit {\_Z}^{4}+1\right )}{\sum }\frac {\left (-3 \textit {\_R}^{4}-1\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7}+3 \textit {\_R}^{3}}\right )}{4}\) \(46\)

Input:

int(x^8/(x^8+3*x^4+1),x,method=_RETURNVERBOSE)
 

Output:

x+1/4*sum((-3*_R^4-1)/(2*_R^7+3*_R^3)*ln(x-_R),_R=RootOf(_Z^8+3*_Z^4+1))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 350, normalized size of antiderivative = 1.02 \[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=\frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} \log \left (\sqrt {\frac {1}{5}} {\left (3 \, \sqrt {5} + 5\right )} \sqrt {-\sqrt {\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} \log \left (-\sqrt {\frac {1}{5}} {\left (3 \, \sqrt {5} + 5\right )} \sqrt {-\sqrt {\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} \log \left (\sqrt {\frac {1}{5}} {\left (3 \, \sqrt {5} - 5\right )} \sqrt {-\sqrt {-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} + 2 \, x\right ) + \frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} \log \left (-\sqrt {\frac {1}{5}} {\left (3 \, \sqrt {5} - 5\right )} \sqrt {-\sqrt {-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}}} + 2 \, x\right ) + \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} \log \left (\sqrt {\frac {1}{5}} {\left (\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} {\left (3 \, \sqrt {5} + 5\right )} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} \log \left (-\sqrt {\frac {1}{5}} {\left (\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} {\left (3 \, \sqrt {5} + 5\right )} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} \log \left (\sqrt {\frac {1}{5}} {\left (3 \, \sqrt {5} - 5\right )} {\left (-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} + 2 \, x\right ) + \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} \log \left (-\sqrt {\frac {1}{5}} {\left (3 \, \sqrt {5} - 5\right )} {\left (-\frac {55}{2} \, \sqrt {5} - \frac {123}{2}\right )}^{\frac {1}{4}} + 2 \, x\right ) + x \] Input:

integrate(x^8/(x^8+3*x^4+1),x, algorithm="fricas")
 

Output:

1/4*sqrt(1/5)*sqrt(-sqrt(55/2*sqrt(5) - 123/2))*log(sqrt(1/5)*(3*sqrt(5) + 
 5)*sqrt(-sqrt(55/2*sqrt(5) - 123/2)) + 2*x) - 1/4*sqrt(1/5)*sqrt(-sqrt(55 
/2*sqrt(5) - 123/2))*log(-sqrt(1/5)*(3*sqrt(5) + 5)*sqrt(-sqrt(55/2*sqrt(5 
) - 123/2)) + 2*x) - 1/4*sqrt(1/5)*sqrt(-sqrt(-55/2*sqrt(5) - 123/2))*log( 
sqrt(1/5)*(3*sqrt(5) - 5)*sqrt(-sqrt(-55/2*sqrt(5) - 123/2)) + 2*x) + 1/4* 
sqrt(1/5)*sqrt(-sqrt(-55/2*sqrt(5) - 123/2))*log(-sqrt(1/5)*(3*sqrt(5) - 5 
)*sqrt(-sqrt(-55/2*sqrt(5) - 123/2)) + 2*x) + 1/4*sqrt(1/5)*(55/2*sqrt(5) 
- 123/2)^(1/4)*log(sqrt(1/5)*(55/2*sqrt(5) - 123/2)^(1/4)*(3*sqrt(5) + 5) 
+ 2*x) - 1/4*sqrt(1/5)*(55/2*sqrt(5) - 123/2)^(1/4)*log(-sqrt(1/5)*(55/2*s 
qrt(5) - 123/2)^(1/4)*(3*sqrt(5) + 5) + 2*x) - 1/4*sqrt(1/5)*(-55/2*sqrt(5 
) - 123/2)^(1/4)*log(sqrt(1/5)*(3*sqrt(5) - 5)*(-55/2*sqrt(5) - 123/2)^(1/ 
4) + 2*x) + 1/4*sqrt(1/5)*(-55/2*sqrt(5) - 123/2)^(1/4)*log(-sqrt(1/5)*(3* 
sqrt(5) - 5)*(-55/2*sqrt(5) - 123/2)^(1/4) + 2*x) + x
 

Sympy [A] (verification not implemented)

Time = 1.15 (sec) , antiderivative size = 29, normalized size of antiderivative = 0.08 \[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=x + \operatorname {RootSum} {\left (40960000 t^{8} + 787200 t^{4} + 1, \left ( t \mapsto t \log {\left (\frac {15360 t^{5}}{11} + \frac {1288 t}{55} + x \right )} \right )\right )} \] Input:

integrate(x**8/(x**8+3*x**4+1),x)
 

Output:

x + RootSum(40960000*_t**8 + 787200*_t**4 + 1, Lambda(_t, _t*log(15360*_t* 
*5/11 + 1288*_t/55 + x)))
 

Maxima [F]

\[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=\int { \frac {x^{8}}{x^{8} + 3 \, x^{4} + 1} \,d x } \] Input:

integrate(x^8/(x^8+3*x^4+1),x, algorithm="maxima")
 

Output:

x - integrate((3*x^4 + 1)/(x^8 + 3*x^4 + 1), x)
 

Giac [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.70 \[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=-\frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (x \sqrt {\sqrt {5} - 1} + 1\right )\right )} \sqrt {25 \, \sqrt {5} + 55} + \frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (-x \sqrt {\sqrt {5} - 1} + 1\right )\right )} \sqrt {25 \, \sqrt {5} + 55} + \frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (x \sqrt {\sqrt {5} + 1} - 1\right )\right )} \sqrt {25 \, \sqrt {5} - 55} - \frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (-x \sqrt {\sqrt {5} + 1} - 1\right )\right )} \sqrt {25 \, \sqrt {5} - 55} - \frac {1}{40} \, \sqrt {25 \, \sqrt {5} + 55} \log \left (722500 \, {\left (x + \sqrt {\sqrt {5} + 1}\right )}^{2} + 722500 \, x^{2}\right ) + \frac {1}{40} \, \sqrt {25 \, \sqrt {5} + 55} \log \left (722500 \, {\left (x - \sqrt {\sqrt {5} + 1}\right )}^{2} + 722500 \, x^{2}\right ) + \frac {1}{40} \, \sqrt {25 \, \sqrt {5} - 55} \log \left (2992900 \, {\left (x + \sqrt {\sqrt {5} - 1}\right )}^{2} + 2992900 \, x^{2}\right ) - \frac {1}{40} \, \sqrt {25 \, \sqrt {5} - 55} \log \left (2992900 \, {\left (x - \sqrt {\sqrt {5} - 1}\right )}^{2} + 2992900 \, x^{2}\right ) + x \] Input:

integrate(x^8/(x^8+3*x^4+1),x, algorithm="giac")
 

Output:

-1/80*(pi + 4*arctan(x*sqrt(sqrt(5) - 1) + 1))*sqrt(25*sqrt(5) + 55) + 1/8 
0*(pi + 4*arctan(-x*sqrt(sqrt(5) - 1) + 1))*sqrt(25*sqrt(5) + 55) + 1/80*( 
pi + 4*arctan(x*sqrt(sqrt(5) + 1) - 1))*sqrt(25*sqrt(5) - 55) - 1/80*(pi + 
 4*arctan(-x*sqrt(sqrt(5) + 1) - 1))*sqrt(25*sqrt(5) - 55) - 1/40*sqrt(25* 
sqrt(5) + 55)*log(722500*(x + sqrt(sqrt(5) + 1))^2 + 722500*x^2) + 1/40*sq 
rt(25*sqrt(5) + 55)*log(722500*(x - sqrt(sqrt(5) + 1))^2 + 722500*x^2) + 1 
/40*sqrt(25*sqrt(5) - 55)*log(2992900*(x + sqrt(sqrt(5) - 1))^2 + 2992900* 
x^2) - 1/40*sqrt(25*sqrt(5) - 55)*log(2992900*(x - sqrt(sqrt(5) - 1))^2 + 
2992900*x^2) + x
 

Mupad [B] (verification not implemented)

Time = 18.97 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.63 \[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=x-\frac {2^{3/4}\,\sqrt {5}\,\mathrm {atan}\left (\frac {3\,2^{1/4}\,x}{2\,{\left (-55\,\sqrt {5}-123\right )}^{1/4}}+\frac {2^{1/4}\,\sqrt {5}\,x}{2\,{\left (-55\,\sqrt {5}-123\right )}^{1/4}}\right )\,{\left (-55\,\sqrt {5}-123\right )}^{1/4}}{20}+\frac {2^{3/4}\,\sqrt {5}\,\mathrm {atan}\left (\frac {3\,2^{1/4}\,x}{2\,{\left (55\,\sqrt {5}-123\right )}^{1/4}}-\frac {2^{1/4}\,\sqrt {5}\,x}{2\,{\left (55\,\sqrt {5}-123\right )}^{1/4}}\right )\,{\left (55\,\sqrt {5}-123\right )}^{1/4}}{20}+\frac {2^{3/4}\,\sqrt {5}\,\mathrm {atan}\left (\frac {2^{1/4}\,x\,3{}\mathrm {i}}{2\,{\left (-55\,\sqrt {5}-123\right )}^{1/4}}+\frac {2^{1/4}\,\sqrt {5}\,x\,1{}\mathrm {i}}{2\,{\left (-55\,\sqrt {5}-123\right )}^{1/4}}\right )\,{\left (-55\,\sqrt {5}-123\right )}^{1/4}\,1{}\mathrm {i}}{20}-\frac {2^{3/4}\,\sqrt {5}\,\mathrm {atan}\left (\frac {2^{1/4}\,x\,3{}\mathrm {i}}{2\,{\left (55\,\sqrt {5}-123\right )}^{1/4}}-\frac {2^{1/4}\,\sqrt {5}\,x\,1{}\mathrm {i}}{2\,{\left (55\,\sqrt {5}-123\right )}^{1/4}}\right )\,{\left (55\,\sqrt {5}-123\right )}^{1/4}\,1{}\mathrm {i}}{20} \] Input:

int(x^8/(3*x^4 + x^8 + 1),x)
 

Output:

x - (2^(3/4)*5^(1/2)*atan((3*2^(1/4)*x)/(2*(- 55*5^(1/2) - 123)^(1/4)) + ( 
2^(1/4)*5^(1/2)*x)/(2*(- 55*5^(1/2) - 123)^(1/4)))*(- 55*5^(1/2) - 123)^(1 
/4))/20 + (2^(3/4)*5^(1/2)*atan((3*2^(1/4)*x)/(2*(55*5^(1/2) - 123)^(1/4)) 
 - (2^(1/4)*5^(1/2)*x)/(2*(55*5^(1/2) - 123)^(1/4)))*(55*5^(1/2) - 123)^(1 
/4))/20 + (2^(3/4)*5^(1/2)*atan((2^(1/4)*x*3i)/(2*(- 55*5^(1/2) - 123)^(1/ 
4)) + (2^(1/4)*5^(1/2)*x*1i)/(2*(- 55*5^(1/2) - 123)^(1/4)))*(- 55*5^(1/2) 
 - 123)^(1/4)*1i)/20 - (2^(3/4)*5^(1/2)*atan((2^(1/4)*x*3i)/(2*(55*5^(1/2) 
 - 123)^(1/4)) - (2^(1/4)*5^(1/2)*x*1i)/(2*(55*5^(1/2) - 123)^(1/4)))*(55* 
5^(1/2) - 123)^(1/4)*1i)/20
 

Reduce [F]

\[ \int \frac {x^8}{1+3 x^4+x^8} \, dx=-3 \left (\int \frac {x^{4}}{x^{8}+3 x^{4}+1}d x \right )-\left (\int \frac {1}{x^{8}+3 x^{4}+1}d x \right )+x \] Input:

int(x^8/(x^8+3*x^4+1),x)
 

Output:

 - 3*int(x**4/(x**8 + 3*x**4 + 1),x) - int(1/(x**8 + 3*x**4 + 1),x) + x