\(\int \frac {x^6}{1+3 x^4+x^8} \, dx\) [112]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 320 \[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\frac {\sqrt [4]{9-4 \sqrt {5}} \arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2 \sqrt {10}}-\frac {\sqrt [4]{9-4 \sqrt {5}} \arctan \left (1+\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2 \sqrt {10}}-\frac {\left (3+\sqrt {5}\right )^{3/4} \arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{4 \sqrt [4]{2} \sqrt {5}}+\frac {\left (3+\sqrt {5}\right )^{3/4} \arctan \left (1+\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{4 \sqrt [4]{2} \sqrt {5}}+\frac {\sqrt [4]{9-4 \sqrt {5}} \text {arctanh}\left (\frac {2^{3/4} \sqrt [4]{3-\sqrt {5}} x}{\sqrt {3-\sqrt {5}}+\sqrt {2} x^2}\right )}{2 \sqrt {10}}-\frac {\left (3+\sqrt {5}\right )^{3/4} \text {arctanh}\left (\frac {2^{3/4} \sqrt [4]{3+\sqrt {5}} x}{\sqrt {3+\sqrt {5}}+\sqrt {2} x^2}\right )}{4 \sqrt [4]{2} \sqrt {5}} \] Output:

-1/20*(9-4*5^(1/2))^(1/4)*arctan(-1+2^(3/4)*x/(3-5^(1/2))^(1/4))*10^(1/2)- 
1/20*(9-4*5^(1/2))^(1/4)*arctan(1+2^(3/4)*x/(3-5^(1/2))^(1/4))*10^(1/2)+1/ 
40*(3+5^(1/2))^(3/4)*arctan(-1+2^(3/4)*x/(3+5^(1/2))^(1/4))*2^(3/4)*5^(1/2 
)+1/40*(3+5^(1/2))^(3/4)*arctan(1+2^(3/4)*x/(3+5^(1/2))^(1/4))*2^(3/4)*5^( 
1/2)+1/20*(9-4*5^(1/2))^(1/4)*arctanh(2^(3/4)*(3-5^(1/2))^(1/4)*x/(1/2*10^ 
(1/2)-1/2*2^(1/2)+x^2*2^(1/2)))*10^(1/2)-1/40*(3+5^(1/2))^(3/4)*arctanh(2^ 
(3/4)*(3+5^(1/2))^(1/4)*x/(1/2*10^(1/2)+1/2*2^(1/2)+x^2*2^(1/2)))*2^(3/4)* 
5^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.13 \[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\frac {1}{4} \text {RootSum}\left [1+3 \text {$\#$1}^4+\text {$\#$1}^8\&,\frac {\log (x-\text {$\#$1}) \text {$\#$1}^3}{3+2 \text {$\#$1}^4}\&\right ] \] Input:

Integrate[x^6/(1 + 3*x^4 + x^8),x]
 

Output:

RootSum[1 + 3*#1^4 + #1^8 & , (Log[x - #1]*#1^3)/(3 + 2*#1^4) & ]/4
 

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 463, normalized size of antiderivative = 1.45, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.562, Rules used = {1710, 27, 826, 1476, 1082, 217, 1479, 25, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^6}{x^8+3 x^4+1} \, dx\)

\(\Big \downarrow \) 1710

\(\displaystyle \frac {1}{10} \left (5-3 \sqrt {5}\right ) \int \frac {2 x^2}{2 x^4-\sqrt {5}+3}dx+\frac {1}{10} \left (5+3 \sqrt {5}\right ) \int \frac {2 x^2}{2 x^4+\sqrt {5}+3}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \int \frac {x^2}{2 x^4-\sqrt {5}+3}dx+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \int \frac {x^2}{2 x^4+\sqrt {5}+3}dx\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {2} x^2+\sqrt {3-\sqrt {5}}}{2 x^4-\sqrt {5}+3}dx}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{2 \sqrt {2}}\right )+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \left (\frac {\int \frac {\sqrt {2} x^2+\sqrt {3+\sqrt {5}}}{2 x^4+\sqrt {5}+3}dx}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \left (\frac {\frac {\int \frac {1}{x^2-\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{2 \sqrt {2}}+\frac {\int \frac {1}{x^2+\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{2 \sqrt {2}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{2 \sqrt {2}}\right )+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \left (\frac {\frac {\int \frac {1}{x^2-\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2 \sqrt {2}}+\frac {\int \frac {1}{x^2+\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2 \sqrt {2}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \left (\frac {\frac {\int \frac {1}{-\left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )^2-1}d\left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\int \frac {1}{-\left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )^2-1}d\left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{2 \sqrt {2}}\right )+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \left (\frac {\frac {\int \frac {1}{-\left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )^2-1}d\left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\int \frac {1}{-\left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )^2-1}d\left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3-\sqrt {5}}-\sqrt {2} x^2}{2 x^4-\sqrt {5}+3}dx}{2 \sqrt {2}}\right )+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {3+\sqrt {5}}-\sqrt {2} x^2}{2 x^4+\sqrt {5}+3}dx}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{2 \sqrt {2}}-\frac {-\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int -\frac {\sqrt [4]{2 \left (3-\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx-\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int -\frac {2 x+\sqrt [4]{2 \left (3-\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{2 \sqrt {2}}\right )+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}-\frac {-\frac {\int -\frac {\sqrt [4]{2 \left (3+\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\int -\frac {2 x+\sqrt [4]{2 \left (3+\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{2 \sqrt {2}}-\frac {\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int \frac {\sqrt [4]{2 \left (3-\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx+\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \int \frac {2 x+\sqrt [4]{2 \left (3-\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3-\sqrt {5}\right )}}dx}{2 \sqrt {2}}\right )+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}-\frac {\frac {\int \frac {\sqrt [4]{2 \left (3+\sqrt {5}\right )}-2 x}{x^2-\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}+\frac {\int \frac {2 x+\sqrt [4]{2 \left (3+\sqrt {5}\right )}}{x^2+\sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {\frac {1}{2} \left (3+\sqrt {5}\right )}}dx}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{5} \left (5-3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3-\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3-\sqrt {5}}}}{2 \sqrt {2}}-\frac {\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \log \left (2 x^2+2 \sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {2 \left (3-\sqrt {5}\right )}\right )-\frac {1}{4} \sqrt [4]{\frac {1}{2} \left (3+\sqrt {5}\right )} \log \left (2 x^2-2 \sqrt [4]{2 \left (3-\sqrt {5}\right )} x+\sqrt {2 \left (3-\sqrt {5}\right )}\right )}{2 \sqrt {2}}\right )+\frac {1}{5} \left (5+3 \sqrt {5}\right ) \left (\frac {\frac {\arctan \left (\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}+1\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\arctan \left (1-\frac {2^{3/4} x}{\sqrt [4]{3+\sqrt {5}}}\right )}{2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}-\frac {\frac {\log \left (2 x^2+2 \sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {2 \left (3+\sqrt {5}\right )}\right )}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}-\frac {\log \left (2 x^2-2 \sqrt [4]{2 \left (3+\sqrt {5}\right )} x+\sqrt {2 \left (3+\sqrt {5}\right )}\right )}{2\ 2^{3/4} \sqrt [4]{3+\sqrt {5}}}}{2 \sqrt {2}}\right )\)

Input:

Int[x^6/(1 + 3*x^4 + x^8),x]
 

Output:

((5 - 3*Sqrt[5])*((-(ArcTan[1 - (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)]/(2^(3/4)* 
(3 - Sqrt[5])^(1/4))) + ArcTan[1 + (2^(3/4)*x)/(3 - Sqrt[5])^(1/4)]/(2^(3/ 
4)*(3 - Sqrt[5])^(1/4)))/(2*Sqrt[2]) - (-1/4*(((3 + Sqrt[5])/2)^(1/4)*Log[ 
Sqrt[2*(3 - Sqrt[5])] - 2*(2*(3 - Sqrt[5]))^(1/4)*x + 2*x^2]) + (((3 + Sqr 
t[5])/2)^(1/4)*Log[Sqrt[2*(3 - Sqrt[5])] + 2*(2*(3 - Sqrt[5]))^(1/4)*x + 2 
*x^2])/4)/(2*Sqrt[2])))/5 + ((5 + 3*Sqrt[5])*((-(ArcTan[1 - (2^(3/4)*x)/(3 
 + Sqrt[5])^(1/4)]/(2^(3/4)*(3 + Sqrt[5])^(1/4))) + ArcTan[1 + (2^(3/4)*x) 
/(3 + Sqrt[5])^(1/4)]/(2^(3/4)*(3 + Sqrt[5])^(1/4)))/(2*Sqrt[2]) - (-1/2*L 
og[Sqrt[2*(3 + Sqrt[5])] - 2*(2*(3 + Sqrt[5]))^(1/4)*x + 2*x^2]/(2^(3/4)*( 
3 + Sqrt[5])^(1/4)) + Log[Sqrt[2*(3 + Sqrt[5])] + 2*(2*(3 + Sqrt[5]))^(1/4 
)*x + 2*x^2]/(2*2^(3/4)*(3 + Sqrt[5])^(1/4)))/(2*Sqrt[2])))/5
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1710
Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(d^n/2)*(b/q + 1)   Int[(d*x)^(m 
- n)/(b/2 + q/2 + c*x^n), x], x] - Simp[(d^n/2)*(b/q - 1)   Int[(d*x)^(m - 
n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] & 
& NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GeQ[m, n]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.04 (sec) , antiderivative size = 40, normalized size of antiderivative = 0.12

method result size
default \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+3 \textit {\_Z}^{4}+1\right )}{\sum }\frac {\textit {\_R}^{6} \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7}+3 \textit {\_R}^{3}}\right )}{4}\) \(40\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{8}+3 \textit {\_Z}^{4}+1\right )}{\sum }\frac {\textit {\_R}^{6} \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{7}+3 \textit {\_R}^{3}}\right )}{4}\) \(40\)

Input:

int(x^6/(x^8+3*x^4+1),x,method=_RETURNVERBOSE)
 

Output:

1/4*sum(_R^6/(2*_R^7+3*_R^3)*ln(x-_R),_R=RootOf(_Z^8+3*_Z^4+1))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 385, normalized size of antiderivative = 1.20 \[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {4 \, \sqrt {5} - 9}} \log \left (\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} + 15\right )} \sqrt {4 \, \sqrt {5} - 9} \sqrt {-\sqrt {4 \, \sqrt {5} - 9}} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {4 \, \sqrt {5} - 9}} \log \left (-\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} + 15\right )} \sqrt {4 \, \sqrt {5} - 9} \sqrt {-\sqrt {4 \, \sqrt {5} - 9}} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {-4 \, \sqrt {5} - 9}} \log \left (\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} - 15\right )} \sqrt {-4 \, \sqrt {5} - 9} \sqrt {-\sqrt {-4 \, \sqrt {5} - 9}} + 2 \, x\right ) + \frac {1}{4} \, \sqrt {\frac {1}{5}} \sqrt {-\sqrt {-4 \, \sqrt {5} - 9}} \log \left (-\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} - 15\right )} \sqrt {-4 \, \sqrt {5} - 9} \sqrt {-\sqrt {-4 \, \sqrt {5} - 9}} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (4 \, \sqrt {5} - 9\right )}^{\frac {1}{4}} \log \left (\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} + 15\right )} {\left (4 \, \sqrt {5} - 9\right )}^{\frac {3}{4}} + 2 \, x\right ) + \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (4 \, \sqrt {5} - 9\right )}^{\frac {1}{4}} \log \left (-\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} + 15\right )} {\left (4 \, \sqrt {5} - 9\right )}^{\frac {3}{4}} + 2 \, x\right ) + \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (-4 \, \sqrt {5} - 9\right )}^{\frac {1}{4}} \log \left (\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} - 15\right )} {\left (-4 \, \sqrt {5} - 9\right )}^{\frac {3}{4}} + 2 \, x\right ) - \frac {1}{4} \, \sqrt {\frac {1}{5}} {\left (-4 \, \sqrt {5} - 9\right )}^{\frac {1}{4}} \log \left (-\sqrt {\frac {1}{5}} {\left (7 \, \sqrt {5} - 15\right )} {\left (-4 \, \sqrt {5} - 9\right )}^{\frac {3}{4}} + 2 \, x\right ) \] Input:

integrate(x^6/(x^8+3*x^4+1),x, algorithm="fricas")
 

Output:

1/4*sqrt(1/5)*sqrt(-sqrt(4*sqrt(5) - 9))*log(sqrt(1/5)*(7*sqrt(5) + 15)*sq 
rt(4*sqrt(5) - 9)*sqrt(-sqrt(4*sqrt(5) - 9)) + 2*x) - 1/4*sqrt(1/5)*sqrt(- 
sqrt(4*sqrt(5) - 9))*log(-sqrt(1/5)*(7*sqrt(5) + 15)*sqrt(4*sqrt(5) - 9)*s 
qrt(-sqrt(4*sqrt(5) - 9)) + 2*x) - 1/4*sqrt(1/5)*sqrt(-sqrt(-4*sqrt(5) - 9 
))*log(sqrt(1/5)*(7*sqrt(5) - 15)*sqrt(-4*sqrt(5) - 9)*sqrt(-sqrt(-4*sqrt( 
5) - 9)) + 2*x) + 1/4*sqrt(1/5)*sqrt(-sqrt(-4*sqrt(5) - 9))*log(-sqrt(1/5) 
*(7*sqrt(5) - 15)*sqrt(-4*sqrt(5) - 9)*sqrt(-sqrt(-4*sqrt(5) - 9)) + 2*x) 
- 1/4*sqrt(1/5)*(4*sqrt(5) - 9)^(1/4)*log(sqrt(1/5)*(7*sqrt(5) + 15)*(4*sq 
rt(5) - 9)^(3/4) + 2*x) + 1/4*sqrt(1/5)*(4*sqrt(5) - 9)^(1/4)*log(-sqrt(1/ 
5)*(7*sqrt(5) + 15)*(4*sqrt(5) - 9)^(3/4) + 2*x) + 1/4*sqrt(1/5)*(-4*sqrt( 
5) - 9)^(1/4)*log(sqrt(1/5)*(7*sqrt(5) - 15)*(-4*sqrt(5) - 9)^(3/4) + 2*x) 
 - 1/4*sqrt(1/5)*(-4*sqrt(5) - 9)^(1/4)*log(-sqrt(1/5)*(7*sqrt(5) - 15)*(- 
4*sqrt(5) - 9)^(3/4) + 2*x)
 

Sympy [A] (verification not implemented)

Time = 1.04 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.08 \[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\operatorname {RootSum} {\left (40960000 t^{8} + 115200 t^{4} + 1, \left ( t \mapsto t \log {\left (- 1792000 t^{7} - 4920 t^{3} + x \right )} \right )\right )} \] Input:

integrate(x**6/(x**8+3*x**4+1),x)
 

Output:

RootSum(40960000*_t**8 + 115200*_t**4 + 1, Lambda(_t, _t*log(-1792000*_t** 
7 - 4920*_t**3 + x)))
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\int { \frac {x^{6}}{x^{8} + 3 \, x^{4} + 1} \,d x } \] Input:

integrate(x^6/(x^8+3*x^4+1),x, algorithm="maxima")
 

Output:

integrate(x^6/(x^8 + 3*x^4 + 1), x)
 

Giac [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.75 \[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (x \sqrt {\sqrt {5} - 1} - 1\right )\right )} \sqrt {10 \, \sqrt {5} + 20} - \frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (-x \sqrt {\sqrt {5} - 1} - 1\right )\right )} \sqrt {10 \, \sqrt {5} + 20} - \frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (x \sqrt {\sqrt {5} + 1} + 1\right )\right )} \sqrt {10 \, \sqrt {5} - 20} + \frac {1}{80} \, {\left (\pi + 4 \, \arctan \left (-x \sqrt {\sqrt {5} + 1} + 1\right )\right )} \sqrt {10 \, \sqrt {5} - 20} - \frac {1}{40} \, \sqrt {10 \, \sqrt {5} + 20} \log \left (400 \, {\left (x + \sqrt {\sqrt {5} + 1}\right )}^{2} + 400 \, x^{2}\right ) + \frac {1}{40} \, \sqrt {10 \, \sqrt {5} + 20} \log \left (400 \, {\left (x - \sqrt {\sqrt {5} + 1}\right )}^{2} + 400 \, x^{2}\right ) + \frac {1}{40} \, \sqrt {10 \, \sqrt {5} - 20} \log \left (10000 \, {\left (x + \sqrt {\sqrt {5} - 1}\right )}^{2} + 10000 \, x^{2}\right ) - \frac {1}{40} \, \sqrt {10 \, \sqrt {5} - 20} \log \left (10000 \, {\left (x - \sqrt {\sqrt {5} - 1}\right )}^{2} + 10000 \, x^{2}\right ) \] Input:

integrate(x^6/(x^8+3*x^4+1),x, algorithm="giac")
 

Output:

1/80*(pi + 4*arctan(x*sqrt(sqrt(5) - 1) - 1))*sqrt(10*sqrt(5) + 20) - 1/80 
*(pi + 4*arctan(-x*sqrt(sqrt(5) - 1) - 1))*sqrt(10*sqrt(5) + 20) - 1/80*(p 
i + 4*arctan(x*sqrt(sqrt(5) + 1) + 1))*sqrt(10*sqrt(5) - 20) + 1/80*(pi + 
4*arctan(-x*sqrt(sqrt(5) + 1) + 1))*sqrt(10*sqrt(5) - 20) - 1/40*sqrt(10*s 
qrt(5) + 20)*log(400*(x + sqrt(sqrt(5) + 1))^2 + 400*x^2) + 1/40*sqrt(10*s 
qrt(5) + 20)*log(400*(x - sqrt(sqrt(5) + 1))^2 + 400*x^2) + 1/40*sqrt(10*s 
qrt(5) - 20)*log(10000*(x + sqrt(sqrt(5) - 1))^2 + 10000*x^2) - 1/40*sqrt( 
10*sqrt(5) - 20)*log(10000*(x - sqrt(sqrt(5) - 1))^2 + 10000*x^2)
 

Mupad [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.47 \[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\frac {\sqrt {5}\,\mathrm {atan}\left (\frac {16\,x\,{\left (-4\,\sqrt {5}-9\right )}^{1/4}}{8\,\sqrt {5}+24}\right )\,{\left (-4\,\sqrt {5}-9\right )}^{1/4}}{10}+\frac {\sqrt {5}\,\mathrm {atan}\left (\frac {16\,x\,{\left (4\,\sqrt {5}-9\right )}^{1/4}}{8\,\sqrt {5}-24}\right )\,{\left (4\,\sqrt {5}-9\right )}^{1/4}}{10}+\frac {\sqrt {5}\,\mathrm {atan}\left (\frac {x\,{\left (-4\,\sqrt {5}-9\right )}^{1/4}\,16{}\mathrm {i}}{8\,\sqrt {5}+24}\right )\,{\left (-4\,\sqrt {5}-9\right )}^{1/4}\,1{}\mathrm {i}}{10}+\frac {\sqrt {5}\,\mathrm {atan}\left (\frac {x\,{\left (4\,\sqrt {5}-9\right )}^{1/4}\,16{}\mathrm {i}}{8\,\sqrt {5}-24}\right )\,{\left (4\,\sqrt {5}-9\right )}^{1/4}\,1{}\mathrm {i}}{10} \] Input:

int(x^6/(3*x^4 + x^8 + 1),x)
 

Output:

(5^(1/2)*atan((16*x*(- 4*5^(1/2) - 9)^(1/4))/(8*5^(1/2) + 24))*(- 4*5^(1/2 
) - 9)^(1/4))/10 + (5^(1/2)*atan((16*x*(4*5^(1/2) - 9)^(1/4))/(8*5^(1/2) - 
 24))*(4*5^(1/2) - 9)^(1/4))/10 + (5^(1/2)*atan((x*(- 4*5^(1/2) - 9)^(1/4) 
*16i)/(8*5^(1/2) + 24))*(- 4*5^(1/2) - 9)^(1/4)*1i)/10 + (5^(1/2)*atan((x* 
(4*5^(1/2) - 9)^(1/4)*16i)/(8*5^(1/2) - 24))*(4*5^(1/2) - 9)^(1/4)*1i)/10
 

Reduce [F]

\[ \int \frac {x^6}{1+3 x^4+x^8} \, dx=\int \frac {x^{6}}{x^{8}+3 x^{4}+1}d x \] Input:

int(x^6/(x^8+3*x^4+1),x)
 

Output:

int(x**6/(x**8 + 3*x**4 + 1),x)