\(\int \frac {1}{(1+2 x+\sqrt {-2+8 x-5 x^2})^2} \, dx\) [54]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 21, antiderivative size = 191 \[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\frac {2 \sqrt {6} \left (13+2 \sqrt {6}-\frac {5 \sqrt {6} \sqrt {-2+8 x-5 x^2}}{4-\sqrt {6}-5 x}\right )}{23 \left (13+2 \sqrt {6}-\frac {10 \sqrt {6} \sqrt {-2+8 x-5 x^2}}{4-\sqrt {6}-5 x}-\frac {5 \left (13-2 \sqrt {6}\right ) \left (2-8 x+5 x^2\right )}{\left (4-\sqrt {6}-5 x\right )^2}\right )}+\frac {12 \arctan \left (\frac {6+\frac {\left (12-13 \sqrt {6}\right ) \sqrt {-2+8 x-5 x^2}}{4-\sqrt {6}-5 x}}{\sqrt {138}}\right )}{23 \sqrt {23}} \] Output:

2*6^(1/2)*(13+2*6^(1/2)-5*6^(1/2)*(-5*x^2+8*x-2)^(1/2)/(4-6^(1/2)-5*x))/(2 
99+46*6^(1/2)-230*6^(1/2)*(-5*x^2+8*x-2)^(1/2)/(4-6^(1/2)-5*x)-115*(13-2*6 
^(1/2))*(5*x^2-8*x+2)/(4-6^(1/2)-5*x)^2)+12/529*arctan(1/138*(6+(12-13*6^( 
1/2))*(-5*x^2+8*x-2)^(1/2)/(4-6^(1/2)-5*x))*138^(1/2))*23^(1/2)
 

Mathematica [A] (verified)

Time = 0.95 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.74 \[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\frac {23 (-150+77 x)+207 (8-13 x) \sqrt {-2+8 x-5 x^2}+108 \sqrt {23} \left (3-4 x+9 x^2\right ) \arctan \left (\frac {\sqrt {23} \left (\sqrt {22+8 \sqrt {6}}-5 x\right )}{6+4 \sqrt {6}-5 \sqrt {6} x+13 \sqrt {-2+8 x-5 x^2}+2 \sqrt {6} \sqrt {-2+8 x-5 x^2}}\right )}{4761 \left (3-4 x+9 x^2\right )} \] Input:

Integrate[(1 + 2*x + Sqrt[-2 + 8*x - 5*x^2])^(-2),x]
 

Output:

(23*(-150 + 77*x) + 207*(8 - 13*x)*Sqrt[-2 + 8*x - 5*x^2] + 108*Sqrt[23]*( 
3 - 4*x + 9*x^2)*ArcTan[(Sqrt[23]*(Sqrt[22 + 8*Sqrt[6]] - 5*x))/(6 + 4*Sqr 
t[6] - 5*Sqrt[6]*x + 13*Sqrt[-2 + 8*x - 5*x^2] + 2*Sqrt[6]*Sqrt[-2 + 8*x - 
 5*x^2])])/(4761*(3 - 4*x + 9*x^2))
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.77, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (\sqrt {-5 x^2+8 x-2}+2 x+1\right )^2} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (-\frac {4 \sqrt {-5 x^2+8 x-2} x}{\left (9 x^2-4 x+3\right )^2}-\frac {1}{9 \left (9 x^2-4 x+3\right )}+\frac {2 (52 x-3)}{9 \left (9 x^2-4 x+3\right )^2}-\frac {2 \sqrt {-5 x^2+8 x-2}}{\left (9 x^2-4 x+3\right )^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {6 \arctan \left (\frac {8-13 x}{\sqrt {23} \sqrt {-5 x^2+8 x-2}}\right )}{23 \sqrt {23}}-\frac {6 \arctan \left (\frac {2-9 x}{\sqrt {23}}\right )}{23 \sqrt {23}}-\frac {150-77 x}{207 \left (9 x^2-4 x+3\right )}+\frac {(2-9 x) \sqrt {-5 x^2+8 x-2}}{23 \left (9 x^2-4 x+3\right )}+\frac {2 (3-2 x) \sqrt {-5 x^2+8 x-2}}{23 \left (9 x^2-4 x+3\right )}\)

Input:

Int[(1 + 2*x + Sqrt[-2 + 8*x - 5*x^2])^(-2),x]
 

Output:

-1/207*(150 - 77*x)/(3 - 4*x + 9*x^2) + ((2 - 9*x)*Sqrt[-2 + 8*x - 5*x^2]) 
/(23*(3 - 4*x + 9*x^2)) + (2*(3 - 2*x)*Sqrt[-2 + 8*x - 5*x^2])/(23*(3 - 4* 
x + 9*x^2)) - (6*ArcTan[(2 - 9*x)/Sqrt[23]])/(23*Sqrt[23]) + (6*ArcTan[(8 
- 13*x)/(Sqrt[23]*Sqrt[-2 + 8*x - 5*x^2])])/(23*Sqrt[23])
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.40 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.58

method result size
trager \(\frac {\left (-41+150 x \right ) x}{621 x^{2}-276 x +207}-\frac {\left (-8+13 x \right ) \sqrt {-5 x^{2}+8 x -2}}{23 \left (9 x^{2}-4 x +3\right )}+\frac {6 \operatorname {RootOf}\left (\textit {\_Z}^{2}+23\right ) \ln \left (\frac {13 \operatorname {RootOf}\left (\textit {\_Z}^{2}+23\right ) x -8 \operatorname {RootOf}\left (\textit {\_Z}^{2}+23\right )+23 \sqrt {-5 x^{2}+8 x -2}}{\operatorname {RootOf}\left (\textit {\_Z}^{2}+23\right ) x -2 x +3}\right )}{529}\) \(110\)
default \(\text {Expression too large to display}\) \(5693\)

Input:

int(1/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x,method=_RETURNVERBOSE)
 

Output:

1/69*(-41+150*x)*x/(9*x^2-4*x+3)-1/23*(-8+13*x)/(9*x^2-4*x+3)*(-5*x^2+8*x- 
2)^(1/2)+6/529*RootOf(_Z^2+23)*ln((13*RootOf(_Z^2+23)*x-8*RootOf(_Z^2+23)+ 
23*(-5*x^2+8*x-2)^(1/2))/(RootOf(_Z^2+23)*x-2*x+3))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.65 \[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\frac {54 \, \sqrt {23} {\left (9 \, x^{2} - 4 \, x + 3\right )} \arctan \left (\frac {1}{23} \, \sqrt {23} {\left (9 \, x - 2\right )}\right ) + 27 \, \sqrt {23} {\left (9 \, x^{2} - 4 \, x + 3\right )} \arctan \left (\frac {\sqrt {23} {\left (142 \, x^{2} - 196 \, x + 55\right )} \sqrt {-5 \, x^{2} + 8 \, x - 2}}{23 \, {\left (65 \, x^{3} - 144 \, x^{2} + 90 \, x - 16\right )}}\right ) - 207 \, \sqrt {-5 \, x^{2} + 8 \, x - 2} {\left (13 \, x - 8\right )} + 1771 \, x - 3450}{4761 \, {\left (9 \, x^{2} - 4 \, x + 3\right )}} \] Input:

integrate(1/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x, algorithm="fricas")
 

Output:

1/4761*(54*sqrt(23)*(9*x^2 - 4*x + 3)*arctan(1/23*sqrt(23)*(9*x - 2)) + 27 
*sqrt(23)*(9*x^2 - 4*x + 3)*arctan(1/23*sqrt(23)*(142*x^2 - 196*x + 55)*sq 
rt(-5*x^2 + 8*x - 2)/(65*x^3 - 144*x^2 + 90*x - 16)) - 207*sqrt(-5*x^2 + 8 
*x - 2)*(13*x - 8) + 1771*x - 3450)/(9*x^2 - 4*x + 3)
 

Sympy [F]

\[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\int \frac {1}{\left (2 x + \sqrt {- 5 x^{2} + 8 x - 2} + 1\right )^{2}}\, dx \] Input:

integrate(1/(1+2*x+(-5*x**2+8*x-2)**(1/2))**2,x)
 

Output:

Integral((2*x + sqrt(-5*x**2 + 8*x - 2) + 1)**(-2), x)
 

Maxima [F]

\[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\int { \frac {1}{{\left (2 \, x + \sqrt {-5 \, x^{2} + 8 \, x - 2} + 1\right )}^{2}} \,d x } \] Input:

integrate(1/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x, algorithm="maxima")
 

Output:

integrate((2*x + sqrt(-5*x^2 + 8*x - 2) + 1)^(-2), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 457 vs. \(2 (148) = 296\).

Time = 0.15 (sec) , antiderivative size = 457, normalized size of antiderivative = 2.39 \[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\frac {6}{529} \, \sqrt {23} \arctan \left (\frac {1}{23} \, \sqrt {23} {\left (9 \, x - 2\right )}\right ) + \frac {6 \, {\left (5 \, \sqrt {6} + 13 \, \sqrt {5}\right )} \arctan \left (-\frac {26 \, \sqrt {6} + 12 \, \sqrt {5} - \frac {139 \, {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}}{5 \, x - 4}}{5 \, \sqrt {138} + 13 \, \sqrt {115}}\right )}{23 \, {\left (5 \, \sqrt {138} + 13 \, \sqrt {115}\right )}} + \frac {6 \, {\left (5 \, \sqrt {6} - 13 \, \sqrt {5}\right )} \arctan \left (\frac {26 \, \sqrt {6} - 12 \, \sqrt {5} - \frac {139 \, {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}}{5 \, x - 4}}{5 \, \sqrt {138} - 13 \, \sqrt {115}}\right )}{23 \, {\left (5 \, \sqrt {138} - 13 \, \sqrt {115}\right )}} + \frac {77 \, x - 150}{207 \, {\left (9 \, x^{2} - 4 \, x + 3\right )}} + \frac {12 \, {\left (278 \, \sqrt {30} + \frac {1183 \, \sqrt {5} {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}^{3}}{{\left (5 \, x - 4\right )}^{3}} + \frac {494 \, \sqrt {30} {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}^{2}}{{\left (5 \, x - 4\right )}^{2}} - \frac {2431 \, \sqrt {5} {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}}{5 \, x - 4}\right )}}{3197 \, {\left (\frac {104 \, \sqrt {6} {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}^{3}}{{\left (5 \, x - 4\right )}^{3}} + \frac {104 \, \sqrt {6} {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}}{5 \, x - 4} - \frac {139 \, {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}^{4}}{{\left (5 \, x - 4\right )}^{4}} - \frac {494 \, {\left (\sqrt {5} \sqrt {-5 \, x^{2} + 8 \, x - 2} - \sqrt {6}\right )}^{2}}{{\left (5 \, x - 4\right )}^{2}} - 139\right )}} \] Input:

integrate(1/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x, algorithm="giac")
 

Output:

6/529*sqrt(23)*arctan(1/23*sqrt(23)*(9*x - 2)) + 6/23*(5*sqrt(6) + 13*sqrt 
(5))*arctan(-(26*sqrt(6) + 12*sqrt(5) - 139*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2 
) - sqrt(6))/(5*x - 4))/(5*sqrt(138) + 13*sqrt(115)))/(5*sqrt(138) + 13*sq 
rt(115)) + 6/23*(5*sqrt(6) - 13*sqrt(5))*arctan((26*sqrt(6) - 12*sqrt(5) - 
 139*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))/(5*x - 4))/(5*sqrt(138) - 
13*sqrt(115)))/(5*sqrt(138) - 13*sqrt(115)) + 1/207*(77*x - 150)/(9*x^2 - 
4*x + 3) + 12/3197*(278*sqrt(30) + 1183*sqrt(5)*(sqrt(5)*sqrt(-5*x^2 + 8*x 
 - 2) - sqrt(6))^3/(5*x - 4)^3 + 494*sqrt(30)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 
 2) - sqrt(6))^2/(5*x - 4)^2 - 2431*sqrt(5)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2 
) - sqrt(6))/(5*x - 4))/(104*sqrt(6)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqr 
t(6))^3/(5*x - 4)^3 + 104*sqrt(6)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6 
))/(5*x - 4) - 139*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))^4/(5*x - 4)^ 
4 - 494*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))^2/(5*x - 4)^2 - 139)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\int \frac {1}{{\left (2\,x+\sqrt {-5\,x^2+8\,x-2}+1\right )}^2} \,d x \] Input:

int(1/(2*x + (8*x - 5*x^2 - 2)^(1/2) + 1)^2,x)
 

Output:

int(1/(2*x + (8*x - 5*x^2 - 2)^(1/2) + 1)^2, x)
 

Reduce [F]

\[ \int \frac {1}{\left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\text {too large to display} \] Input:

int(1/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x)
 

Output:

(3337104171021340901699934769453582072500*sqrt(5)*asin((5*x - 4)/sqrt(6))* 
x**4 - 10678733347268290885439791262251462632000*sqrt(5)*asin((5*x - 4)/sq 
rt(6))*x**3 + 12481593575958338760234718984613052156600*sqrt(5)*asin((5*x 
- 4)/sqrt(6))*x**2 - 6301771037029929683012617559699011281600*sqrt(5)*asin 
((5*x - 4)/sqrt(6))*x + 2427434293291079085532841439706235255700*sqrt(5)*a 
sin((5*x - 4)/sqrt(6)) + 35779384266150332363857638619867751250000*sqrt(6) 
*asin((5*x - 4)/sqrt(6))*x**4 - 114494029651681063564344443583576804000000 
*sqrt(6)*asin((5*x - 4)/sqrt(6))*x**3 + 1338237315712704283080779036577177 
02700000*sqrt(6)*asin((5*x - 4)/sqrt(6))*x**2 - 67565612559880923930563758 
065370015200000*sqrt(6)*asin((5*x - 4)/sqrt(6))*x + 2602618914767379731948 
7556388674171650000*sqrt(6)*asin((5*x - 4)/sqrt(6)) + 30476289500894211571 
533409695999972135000*sqrt( - 5*x**2 + 8*x - 2)*sqrt(30)*x**3 - 9683914504 
2637750980836153330660404932000*sqrt( - 5*x**2 + 8*x - 2)*sqrt(30)*x**2 + 
95693382777758940941601601040099457522600*sqrt( - 5*x**2 + 8*x - 2)*sqrt(3 
0)*x - 21887937799117513267724298553180042951200*sqrt( - 5*x**2 + 8*x - 2) 
*sqrt(30) - 51954257509779098300964798000505300624125*sqrt( - 5*x**2 + 8*x 
 - 2)*x**3 + 168717983419223696552091452317731605683800*sqrt( - 5*x**2 + 8 
*x - 2)*x**2 - 191453453983614797943154461052618366322580*sqrt( - 5*x**2 + 
 8*x - 2)*x + 76676391655013209476212087819959270069896*sqrt( - 5*x**2 + 8 
*x - 2) - 503943787523333270567506417940353427767468857600000*sqrt(30)*...