\(\int \frac {1}{x (1+2 x+\sqrt {-2+8 x-5 x^2})^2} \, dx\) [55]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 420 \[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\frac {2 \sqrt {\frac {2}{3}} \left (2 \left (13+2 \sqrt {6}\right )+\frac {5 \left (323-72 \sqrt {6}\right ) \sqrt {-2+8 x-5 x^2}}{\left (13-2 \sqrt {6}\right ) \left (4-\sqrt {6}-5 x\right )}\right )}{23 \left (13+2 \sqrt {6}-\frac {10 \sqrt {6} \sqrt {-2+8 x-5 x^2}}{4-\sqrt {6}-5 x}-\frac {5 \left (13-2 \sqrt {6}\right ) \left (2-8 x+5 x^2\right )}{\left (4-\sqrt {6}-5 x\right )^2}\right )}+\frac {4}{9} \sqrt {2} \arctan \left (\frac {\sqrt {11-4 \sqrt {6}} \sqrt {-2+8 x-5 x^2}}{4-\sqrt {6}-5 x}\right )+\frac {808 \arctan \left (\frac {6+\frac {\left (12-13 \sqrt {6}\right ) \sqrt {-2+8 x-5 x^2}}{4-\sqrt {6}-5 x}}{\sqrt {138}}\right )}{207 \sqrt {23}}-\frac {1}{9} \log \left (\frac {x \left (2 \left (1203-542 \sqrt {6}\right )-5 \left (312-193 \sqrt {6}\right ) x\right )}{\left (4-\sqrt {6}-5 x\right )^2}\right )+\frac {1}{9} \log \left (\frac {2 \left (3-2 \sqrt {6}\right )+12 x-3 \sqrt {6} x+10 \sqrt {6} x^2+6 \sqrt {-2+8 x-5 x^2}-4 \sqrt {6} \sqrt {-2+8 x-5 x^2}+5 \sqrt {6} x \sqrt {-2+8 x-5 x^2}}{\left (4-\sqrt {6}-5 x\right )^2}\right ) \] Output:

2/3*6^(1/2)*(26+4*6^(1/2)+5*(323-72*6^(1/2))*(-5*x^2+8*x-2)^(1/2)/(13-2*6^ 
(1/2))/(4-6^(1/2)-5*x))/(299+46*6^(1/2)-230*6^(1/2)*(-5*x^2+8*x-2)^(1/2)/( 
4-6^(1/2)-5*x)-115*(13-2*6^(1/2))*(5*x^2-8*x+2)/(4-6^(1/2)-5*x)^2)+4/9*2^( 
1/2)*arctan((2*2^(1/2)-3^(1/2))*(-5*x^2+8*x-2)^(1/2)/(4-6^(1/2)-5*x))+808/ 
4761*arctan(1/138*(6+(12-13*6^(1/2))*(-5*x^2+8*x-2)^(1/2)/(4-6^(1/2)-5*x)) 
*138^(1/2))*23^(1/2)-1/9*ln(x*(2406-1084*6^(1/2)-5*(312-193*6^(1/2))*x)/(4 
-6^(1/2)-5*x)^2)+1/9*ln((6-4*6^(1/2)+12*x-3*x*6^(1/2)+10*6^(1/2)*x^2+6*(-5 
*x^2+8*x-2)^(1/2)-4*6^(1/2)*(-5*x^2+8*x-2)^(1/2)+5*6^(1/2)*x*(-5*x^2+8*x-2 
)^(1/2))/(4-6^(1/2)-5*x)^2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 12.57 (sec) , antiderivative size = 1157, normalized size of antiderivative = 2.75 \[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx =\text {Too large to display} \] Input:

Integrate[1/(x*(1 + 2*x + Sqrt[-2 + 8*x - 5*x^2])^2),x]
 

Output:

(-41 + 150*x)/(69*(3 - 4*x + 9*x^2)) - ((7 + 72*x)*Sqrt[-2 + 8*x - 5*x^2]) 
/(69*(3 - 4*x + 9*x^2)) + (404*ArcTan[(-2 + 9*x)/Sqrt[23]])/(207*Sqrt[23]) 
 - (2*Sqrt[2]*ArcTan[(1 - 2*x)/Sqrt[-1 + 4*x - (5*x^2)/2]])/9 + ((466 - (1 
23*I)*Sqrt[23])*ArcTan[(23*(-78288400 + (52722176*I)*Sqrt[23] + 8*(6506563 
1 - (46853872*I)*Sqrt[23])*x + (-2667985531 + (915021224*I)*Sqrt[23])*x^2 
+ 216*(23290691 - (4257604*I)*Sqrt[23])*x^3 + (81*I)*(36383449*I + 3933540 
*Sqrt[23])*x^4))/(162*(-171380820*I + 5425559*Sqrt[23])*x^4 - 4*(-80769707 
2*I + 42117106*Sqrt[23] + 15258321*Sqrt[23*(77 - (52*I)*Sqrt[23])]*Sqrt[-2 
 + 8*x - 5*x^2]) + 9*x^3*(5524564396*I + 775570808*Sqrt[23] + 25430535*Sqr 
t[23*(77 - (52*I)*Sqrt[23])]*Sqrt[-2 + 8*x - 5*x^2]) - 2*x^2*(5753590024*I 
 + 5250004481*Sqrt[23] + 142410996*Sqrt[23*(77 - (52*I)*Sqrt[23])]*Sqrt[-2 
 + 8*x - 5*x^2]) + x*(-10803484744*I + 3720914272*Sqrt[23] + 157669317*Sqr 
t[23*(77 - (52*I)*Sqrt[23])]*Sqrt[-2 + 8*x - 5*x^2]))])/(46*Sqrt[23*(77 - 
(52*I)*Sqrt[23])]) - ((I/46)*(-466*I + 123*Sqrt[23])*ArcTan[(23*(78288400 
+ (52722176*I)*Sqrt[23] + (-520525048 - (374830976*I)*Sqrt[23])*x + (26679 
85531 + (915021224*I)*Sqrt[23])*x^2 + (-5030789256 - (919642464*I)*Sqrt[23 
])*x^3 + 81*(36383449 + (3933540*I)*Sqrt[23])*x^4))/(162*(171380820*I + 54 
25559*Sqrt[23])*x^4 - 4*(807697072*I + 42117106*Sqrt[23] + 15258321*Sqrt[2 
3*(77 + (52*I)*Sqrt[23])]*Sqrt[-2 + 8*x - 5*x^2]) + 9*x^3*(-5524564396*I + 
 775570808*Sqrt[23] + 25430535*Sqrt[23*(77 + (52*I)*Sqrt[23])]*Sqrt[-2 ...
 

Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.55, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \left (\sqrt {-5 x^2+8 x-2}+2 x+1\right )^2} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {2 \sqrt {-5 x^2+8 x-2} x}{9 x^2-4 x+3}+\frac {6 \sqrt {-5 x^2+8 x-2} x}{\left (9 x^2-4 x+3\right )^2}+\frac {9 x-4}{9 \left (9 x^2-4 x+3\right )}-\frac {8 \sqrt {-5 x^2+8 x-2}}{9 \left (9 x^2-4 x+3\right )}+\frac {2 (3 x+16)}{3 \left (9 x^2-4 x+3\right )^2}-\frac {20 \sqrt {-5 x^2+8 x-2}}{3 \left (9 x^2-4 x+3\right )^2}-\frac {2 \sqrt {-5 x^2+8 x-2}}{9 x}-\frac {1}{9 x}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {404 \arctan \left (\frac {8-13 x}{\sqrt {23} \sqrt {-5 x^2+8 x-2}}\right )}{207 \sqrt {23}}-\frac {2}{9} \sqrt {2} \arctan \left (\frac {\sqrt {2} (1-2 x)}{\sqrt {-5 x^2+8 x-2}}\right )-\frac {404 \arctan \left (\frac {2-9 x}{\sqrt {23}}\right )}{207 \sqrt {23}}+\frac {1}{9} \text {arctanh}\left (\frac {2 x+1}{\sqrt {-5 x^2+8 x-2}}\right )-\frac {41-150 x}{69 \left (9 x^2-4 x+3\right )}+\frac {10 (2-9 x) \sqrt {-5 x^2+8 x-2}}{69 \left (9 x^2-4 x+3\right )}-\frac {3 (3-2 x) \sqrt {-5 x^2+8 x-2}}{23 \left (9 x^2-4 x+3\right )}+\frac {1}{18} \log \left (9 x^2-4 x+3\right )-\frac {\log (x)}{9}\)

Input:

Int[1/(x*(1 + 2*x + Sqrt[-2 + 8*x - 5*x^2])^2),x]
 

Output:

-1/69*(41 - 150*x)/(3 - 4*x + 9*x^2) + (10*(2 - 9*x)*Sqrt[-2 + 8*x - 5*x^2 
])/(69*(3 - 4*x + 9*x^2)) - (3*(3 - 2*x)*Sqrt[-2 + 8*x - 5*x^2])/(23*(3 - 
4*x + 9*x^2)) - (404*ArcTan[(2 - 9*x)/Sqrt[23]])/(207*Sqrt[23]) + (404*Arc 
Tan[(8 - 13*x)/(Sqrt[23]*Sqrt[-2 + 8*x - 5*x^2])])/(207*Sqrt[23]) - (2*Sqr 
t[2]*ArcTan[(Sqrt[2]*(1 - 2*x))/Sqrt[-2 + 8*x - 5*x^2]])/9 + ArcTanh[(1 + 
2*x)/Sqrt[-2 + 8*x - 5*x^2]]/9 - Log[x]/9 + Log[3 - 4*x + 9*x^2]/18
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.01 (sec) , antiderivative size = 1463, normalized size of antiderivative = 3.48

method result size
trager \(\text {Expression too large to display}\) \(1463\)
default \(\text {Expression too large to display}\) \(5738\)

Input:

int(1/x/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x,method=_RETURNVERBOSE)
 

Output:

-1/552*(x-1)*(-655+981*x)/(9*x^2-4*x+3)-1/69*(7+72*x)/(9*x^2-4*x+3)*(-5*x^ 
2+8*x-2)^(1/2)+8/69*RootOf(4416*_Z^2-8464*_Z+58461)*ln((-89451343872*RootO 
f(192*_Z^2+368*_Z+1587)^2*RootOf(4416*_Z^2-8464*_Z+58461)^2*x+89451343872* 
RootOf(192*_Z^2+368*_Z+1587)^2*RootOf(4416*_Z^2-8464*_Z+58461)^2+465496565 
76*RootOf(192*_Z^2+368*_Z+1587)^2*RootOf(4416*_Z^2-8464*_Z+58461)*x+144649 
08288*RootOf(192*_Z^2+368*_Z+1587)*RootOf(4416*_Z^2-8464*_Z+58461)^2*x+650 
380531200*RootOf(192*_Z^2+368*_Z+1587)*RootOf(4416*_Z^2-8464*_Z+58461)*(-5 
*x^2+8*x-2)^(1/2)-46549656576*RootOf(192*_Z^2+368*_Z+1587)^2*RootOf(4416*_ 
Z^2-8464*_Z+58461)+580683339840*RootOf(192*_Z^2+368*_Z+1587)^2*x-144649082 
88*RootOf(192*_Z^2+368*_Z+1587)*RootOf(4416*_Z^2-8464*_Z+58461)^2-32879158 
24896*RootOf(192*_Z^2+368*_Z+1587)*RootOf(4416*_Z^2-8464*_Z+58461)*x+17166 
5663040*RootOf(4416*_Z^2-8464*_Z+58461)^2*x-4853853119680*RootOf(192*_Z^2+ 
368*_Z+1587)*(-5*x^2+8*x-2)^(1/2)+3723879909312*(-5*x^2+8*x-2)^(1/2)*RootO 
f(4416*_Z^2-8464*_Z+58461)-580683339840*RootOf(192*_Z^2+368*_Z+1587)^2+188 
4817283328*RootOf(192*_Z^2+368*_Z+1587)*RootOf(4416*_Z^2-8464*_Z+58461)-19 
46078840592*RootOf(192*_Z^2+368*_Z+1587)*x-171665663040*RootOf(4416*_Z^2-8 
464*_Z+58461)^2+1641919518864*RootOf(4416*_Z^2-8464*_Z+58461)*x-2589122322 
48*(-5*x^2+8*x-2)^(1/2)-1282338842928*RootOf(192*_Z^2+368*_Z+1587)+4185660 
19248*RootOf(4416*_Z^2-8464*_Z+58461)-16643164132803*x+3942356932059)/x)+2 
/9*ln(-(29817114624*RootOf(192*_Z^2+368*_Z+1587)^2*RootOf(4416*_Z^2-846...
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 372, normalized size of antiderivative = 0.89 \[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\frac {1616 \, \sqrt {23} {\left (9 \, x^{2} - 4 \, x + 3\right )} \arctan \left (\frac {1}{23} \, \sqrt {23} {\left (9 \, x - 2\right )}\right ) - 4232 \, \sqrt {2} {\left (9 \, x^{2} - 4 \, x + 3\right )} \arctan \left (\frac {\sqrt {2} \sqrt {-5 \, x^{2} + 8 \, x - 2} {\left (2 \, x - 1\right )}}{5 \, x^{2} - 8 \, x + 2}\right ) + 808 \, \sqrt {23} {\left (9 \, x^{2} - 4 \, x + 3\right )} \arctan \left (\frac {\sqrt {23} \sqrt {-5 \, x^{2} + 8 \, x - 2} {\left (13 \, x - 8\right )} + 2 \, \sqrt {23} {\left (2 \, x^{2} - 3 \, x\right )}}{23 \, {\left (7 \, x^{2} - 8 \, x + 2\right )}}\right ) + 808 \, \sqrt {23} {\left (9 \, x^{2} - 4 \, x + 3\right )} \arctan \left (\frac {\sqrt {23} \sqrt {-5 \, x^{2} + 8 \, x - 2} {\left (13 \, x - 8\right )} - 2 \, \sqrt {23} {\left (2 \, x^{2} - 3 \, x\right )}}{23 \, {\left (7 \, x^{2} - 8 \, x + 2\right )}}\right ) + 1058 \, {\left (9 \, x^{2} - 4 \, x + 3\right )} \log \left (9 \, x^{2} - 4 \, x + 3\right ) - 2116 \, {\left (9 \, x^{2} - 4 \, x + 3\right )} \log \left (x\right ) - 529 \, {\left (9 \, x^{2} - 4 \, x + 3\right )} \log \left (-\frac {x^{2} + 2 \, \sqrt {-5 \, x^{2} + 8 \, x - 2} {\left (2 \, x + 1\right )} - 12 \, x + 1}{x^{2}}\right ) + 529 \, {\left (9 \, x^{2} - 4 \, x + 3\right )} \log \left (-\frac {x^{2} - 2 \, \sqrt {-5 \, x^{2} + 8 \, x - 2} {\left (2 \, x + 1\right )} - 12 \, x + 1}{x^{2}}\right ) - 276 \, \sqrt {-5 \, x^{2} + 8 \, x - 2} {\left (72 \, x + 7\right )} + 41400 \, x - 11316}{19044 \, {\left (9 \, x^{2} - 4 \, x + 3\right )}} \] Input:

integrate(1/x/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x, algorithm="fricas")
 

Output:

1/19044*(1616*sqrt(23)*(9*x^2 - 4*x + 3)*arctan(1/23*sqrt(23)*(9*x - 2)) - 
 4232*sqrt(2)*(9*x^2 - 4*x + 3)*arctan(sqrt(2)*sqrt(-5*x^2 + 8*x - 2)*(2*x 
 - 1)/(5*x^2 - 8*x + 2)) + 808*sqrt(23)*(9*x^2 - 4*x + 3)*arctan(1/23*(sqr 
t(23)*sqrt(-5*x^2 + 8*x - 2)*(13*x - 8) + 2*sqrt(23)*(2*x^2 - 3*x))/(7*x^2 
 - 8*x + 2)) + 808*sqrt(23)*(9*x^2 - 4*x + 3)*arctan(1/23*(sqrt(23)*sqrt(- 
5*x^2 + 8*x - 2)*(13*x - 8) - 2*sqrt(23)*(2*x^2 - 3*x))/(7*x^2 - 8*x + 2)) 
 + 1058*(9*x^2 - 4*x + 3)*log(9*x^2 - 4*x + 3) - 2116*(9*x^2 - 4*x + 3)*lo 
g(x) - 529*(9*x^2 - 4*x + 3)*log(-(x^2 + 2*sqrt(-5*x^2 + 8*x - 2)*(2*x + 1 
) - 12*x + 1)/x^2) + 529*(9*x^2 - 4*x + 3)*log(-(x^2 - 2*sqrt(-5*x^2 + 8*x 
 - 2)*(2*x + 1) - 12*x + 1)/x^2) - 276*sqrt(-5*x^2 + 8*x - 2)*(72*x + 7) + 
 41400*x - 11316)/(9*x^2 - 4*x + 3)
 

Sympy [F]

\[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\int \frac {1}{x \left (2 x + \sqrt {- 5 x^{2} + 8 x - 2} + 1\right )^{2}}\, dx \] Input:

integrate(1/x/(1+2*x+(-5*x**2+8*x-2)**(1/2))**2,x)
 

Output:

Integral(1/(x*(2*x + sqrt(-5*x**2 + 8*x - 2) + 1)**2), x)
 

Maxima [F]

\[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\int { \frac {1}{{\left (2 \, x + \sqrt {-5 \, x^{2} + 8 \, x - 2} + 1\right )}^{2} x} \,d x } \] Input:

integrate(1/x/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x, algorithm="maxima")
 

Output:

integrate(1/((2*x + sqrt(-5*x^2 + 8*x - 2) + 1)^2*x), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 694 vs. \(2 (318) = 636\).

Time = 0.17 (sec) , antiderivative size = 694, normalized size of antiderivative = 1.65 \[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(1/x/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x, algorithm="giac")
 

Output:

-4/45*sqrt(10)*sqrt(5)*arctan(-1/10*sqrt(10)*(sqrt(6) - 4*(sqrt(5)*sqrt(-5 
*x^2 + 8*x - 2) - sqrt(6))/(5*x - 4))) + 404/4761*sqrt(23)*arctan(1/23*sqr 
t(23)*(9*x - 2)) + 404/207*(5*sqrt(6) + 13*sqrt(5))*arctan(-(26*sqrt(6) + 
12*sqrt(5) - 139*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))/(5*x - 4))/(5* 
sqrt(138) + 13*sqrt(115)))/(5*sqrt(138) + 13*sqrt(115)) + 404/207*(5*sqrt( 
6) - 13*sqrt(5))*arctan((26*sqrt(6) - 12*sqrt(5) - 139*(sqrt(5)*sqrt(-5*x^ 
2 + 8*x - 2) - sqrt(6))/(5*x - 4))/(5*sqrt(138) - 13*sqrt(115)))/(5*sqrt(1 
38) - 13*sqrt(115)) + 1/69*(150*x - 41)/(9*x^2 - 4*x + 3) + 2/9591*(44897* 
sqrt(30) - 40728*sqrt(5)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))^3/(5*x 
 - 4)^3 + 79781*sqrt(30)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))^2/(5*x 
 - 4)^2 - 160824*sqrt(5)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))/(5*x - 
 4))/(104*sqrt(6)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))^3/(5*x - 4)^3 
 + 104*sqrt(6)*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))/(5*x - 4) - 139* 
(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))^4/(5*x - 4)^4 - 494*(sqrt(5)*sq 
rt(-5*x^2 + 8*x - 2) - sqrt(6))^2/(5*x - 4)^2 - 139) + 1/18*log(9*x^2 - 4* 
x + 3) + 1/18*log(-4*(sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))*(13*sqrt(6 
) + 6*sqrt(5))/(5*x - 4) + 26*sqrt(30) + 139*(sqrt(5)*sqrt(-5*x^2 + 8*x - 
2) - sqrt(6))^2/(5*x - 4)^2 + 199) - 1/18*log(-4*(sqrt(5)*sqrt(-5*x^2 + 8* 
x - 2) - sqrt(6))*(13*sqrt(6) - 6*sqrt(5))/(5*x - 4) - 26*sqrt(30) + 139*( 
sqrt(5)*sqrt(-5*x^2 + 8*x - 2) - sqrt(6))^2/(5*x - 4)^2 + 199) - 1/9*lo...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\int \frac {1}{x\,{\left (2\,x+\sqrt {-5\,x^2+8\,x-2}+1\right )}^2} \,d x \] Input:

int(1/(x*(2*x + (8*x - 5*x^2 - 2)^(1/2) + 1)^2),x)
 

Output:

int(1/(x*(2*x + (8*x - 5*x^2 - 2)^(1/2) + 1)^2), x)
 

Reduce [F]

\[ \int \frac {1}{x \left (1+2 x+\sqrt {-2+8 x-5 x^2}\right )^2} \, dx=\text {too large to display} \] Input:

int(1/x/(1+2*x+(-5*x^2+8*x-2)^(1/2))^2,x)
 

Output:

(1243502140332302057611030265081233839446761718709500939852381550457257000 
00*sqrt(5)*asin((5*x - 4)/sqrt(6))*x**4 - 39792068490633665843552968482599 
4828622963749987040300752762096146322240000*sqrt(5)*asin((5*x - 4)/sqrt(6) 
)*x**3 + 46510050424083238441214534457902543703554435839534617868849075867 
4729112000*sqrt(5)*asin((5*x - 4)/sqrt(6))*x**2 - 234822330105220892261954 
554749167318619477373449142300938049730812274112000*sqrt(5)*asin((5*x - 4) 
/sqrt(6))*x + 904532668004681941165949422451682689138311116868688831803732 
35744372324000*sqrt(5)*asin((5*x - 4)/sqrt(6)) + 1999902160181581628214215 
09988561225427180510564483037380883718849862800000*sqrt(6)*asin((5*x - 4)/ 
sqrt(6))*x**4 - 6399686912581061210285488319633959213669776338063457196188 
27900319560960000*sqrt(6)*asin((5*x - 4)/sqrt(6))*x**3 + 74801278820816292 
6029356304520179121671834660254515814875463351392030048000*sqrt(6)*asin((5 
*x - 4)/sqrt(6))*x**2 - 37766053632268484673042758231913981532520408513510 
2782688641649818210048000*sqrt(6)*asin((5*x - 4)/sqrt(6))*x + 145474364540 
615789548619202080568239532956489906905439042983564378196496000*sqrt(6)*as 
in((5*x - 4)/sqrt(6)) - 17224415698124116295459602831413510875039588054292 
1478988924570822452428800*sqrt(15)*atan((sqrt(3) - 2*sqrt(2)*tan(asin((5*x 
 - 4)/sqrt(6))/2))/sqrt(5))*x**4 + 551181302339971721454707290605232348001 
266817737348732764558626631847772160*sqrt(15)*atan((sqrt(3) - 2*sqrt(2)*ta 
n(asin((5*x - 4)/sqrt(6))/2))/sqrt(5))*x**3 - 6442356765313187991200544...